Problem 1 Determine which ones of the following statements are true, and which ones are false:

• $\mathcal{P}(\mathbb{N}) \subset \mathcal{P}(\mathbb{Z})$ • $\mathbb{N} \subset \mathcal{P}(\mathbb{Z})$ • $\{\emptyset\} \subset \mathcal{P}(\mathbb{N})$ • $\{\emptyset\} \in \mathcal{P}(\mathbb{N})$ • $\{1, 2, 3\} \in \mathcal{P}(\mathbb{N})$

Problem 2 Give an example of three sets A, B, C, such that $A \in B, B \in C, A \in C$, but $B \not\subseteq C$.

Problem 3 Describe the following sets by means of a picture:

• $\{x \in \mathbb{R} : x^2 > 2\}$ • $\{x \in \mathbb{Q} : x^2 = 2\}$ • $\{x \in \mathbb{R} : \exists n \in \mathbb{Z}, x > n^2\}$ • $\{x \in \mathbb{R} : \forall n \in \mathbb{Z}, x > n^2\}$ • $\{x \in \mathbb{R} : \forall n \in \mathbb{Z}, x > n^2\}$ • $\{(x, y) \in \mathbb{R}^2 : x + y \le 1\}$

Problem 4 Show by means of a truth table that if $P \Rightarrow Q$ and $Q \Rightarrow R$, then $P \Rightarrow R$:

Problem 5 Prove that for every $n \in \mathbb{Z}$, the number $\frac{1}{2}(n^2 + n)$ is an integer.

Problem 6 Prove that if $a \equiv b \pmod{n}$, then $4a \equiv 4b \pmod{2n}$.

Solution: 1: Yes, every subset of \mathbb{N} is also a subset of \mathbb{Z} . 2: No, the elements of \mathbb{N} are numbers, and no number is an element of $\mathcal{P}(\mathbb{Z})$. 3: Yes, the empty set is an element of $\mathcal{P}(\mathbb{N})$. 4: No, the elements of $\mathcal{P}(\mathbb{Z})$ are sets of numbers, and $\mathcal{P}(\mathbb{N})$ is not a set of numbers. 5: Yes, \mathbb{N} is a subset of \mathbb{Z} . 6: Yes, $\{1, 2, 3\}$ is a subset of \mathbb{N} .

Solution: This problem has many possible solutions. Here is an example that work: $A = \{1\}, B = \{\{1\}, 2\}, C = \{\{1\}, \{\{1\}, 2\}\}.$

Solution: 1: $\xleftarrow{}{}^{\sqrt{2}} \longrightarrow 2$: The empty set because $\pm \sqrt{2}$ are irrational numbers. 3: 4: 4: 5: The empty set because squares can get arbitrarily

> .1) $1, 0) \rightarrow$

large, and it is impossible for a number to be bigger than every square. 6:

PQR $P \Rightarrow Q \mid Q \Rightarrow R \mid (P \Rightarrow Q) \land (Q \Rightarrow R) \mid P \Rightarrow R \mid$ our expression Т Т Т Τ Τ Τ Τ Τ Τ Τ F Т F F F Т Т Т Τ Τ F Т F Т F F F Т F F Τ Т Т Т Т Т Т F Т F Т F Т F Т F Т Т Т Т F Т Т Τ F F F F Т Τ Т Т Т

Solution: We have to show that $((P \Rightarrow Q) \land (Q \Rightarrow R)) \Rightarrow (P \Rightarrow R)$ always holds.

Solution: We split the problem in two cases. Case 1: n is even. Then n = 2k for some $k \in \mathbb{Z}$, and $n^2 + n = 4k^2 + 2k = 2(2k^2 + k)$. It follows that $\frac{1}{2}(n^2 + n) = 2k^2 + k$, which is clearly an integer. Case 2: n is odd. Then n = 2k + 1 for some $k \in \mathbb{Z}$, and $n^{2}+n = (4k^{2}+4k+1)+(2k+1) = 2(2k^{2}+3k+1)$. It follow that $\frac{1}{2}(n^{2}+n) = 2k^{2}+3k+1$, which is also clearly an integer.

Solution: By definition, $a \equiv b \pmod{n}$ means that there exists an integer number k such that a - b = kn. We want to show that $4a \equiv 4b \pmod{2n}$, that is, there exists an integer ℓ such that $4a - 4b = \ell 2n$. For that, we may take $\ell = 2k$: $4a - 4b = \ell 2n$. $4(a-b) = 4kn = 2\ell n.$

Problem 1 Among the following statements, determine which ones are tautologies, and which ones are contradictions:

• $P \Rightarrow (P \Rightarrow Q)$ • $(P \land (P \Leftrightarrow Q)) \Rightarrow Q$ • $(P \land (Q \lor R)) \Leftrightarrow ((P \land Q) \lor R).$

Problem 2 Prove the following statement: Given an integer $x \in \mathbb{Z}$, x is even if and only if 5 - x is odd.

Problem 3 Let $a, b, n \in \mathbb{Z}$ be integer numbers. Define, using mathematical symbols only, what it means that $a \equiv b \pmod{n}$.

Problem 4 Let $A := \{1, 2, 3, 4, 5\}$, and $B := \{\{1\}, \{2\}, \{3\}, \{4\}, \{5\}\}$. Which of the following statements are true?

- $A \subseteq B$ • $A \in B$ • $B \subset \mathcal{P}(A)$ • $A \in B$ • $\exists x, x \in A \cap B$ • $\forall x \in B, x \subset A$ • The cardinality of $A \cup B$ is 5. • B is a partition of A.
- $\forall x \in A, \{x\} \in B$ $\exists x, x \in A \cap B$

Problem 5 For $x \in \{-10, -9, -8, \dots, 7, 8, 9, 10\}$, consider the following sentences:

P(x): x is odd. $Q(x): x \ge 1.$ $R(x): x \in \{-1, 0, 1\}.$ For which $x \in \{-10, \dots, 9, 10\}$ are the following statements true?

- $(\sim P(x)) \land Q(x)$ • $R(x) \Rightarrow P(x)$ • $P(x) \Leftrightarrow Q(x)$ • $Q(x) \lor R(x)$ • $\sim (Q(x) \land R(x)).$
- statements true: