Problem 1 Determine which ones of the following statements are true, and which ones are false:

• $P(\mathbb{N}) \subset P(\mathbb{Z})$ • $\mathbb{N} \subset P(\mathbb{Z})$ • $P(\mathbb{N}) \in \mathcal{P}(\mathbb{Z})$ • $\mathbb{N} \in \mathcal{P}(\mathbb{Z})$ • $\{1, 2, 3\} \in \mathcal{P}(\mathbb{N})$ • $\{\emptyset\} \subset \mathcal{P}(\mathbb{N})$

Problem 2 Give an example of three sets A, B, C, such that $A \in B$, $B \in C$, $A \in C$, but $B \nsubseteq C$.

Problem 3 Describe the following sets by means of a picture:

Problem 4 Show by means of a truth table that if $P \Rightarrow Q$ and $Q \Rightarrow R$, then $P \Rightarrow R$:

Problem 5 Prove that for every $n \in \mathbb{Z}$, the number $\frac{1}{2}(n^2 + n)$ is an integer.

Problem 6 Prove that if $a \equiv b \pmod{n}$, then $4a \equiv 4b \pmod{2n}$.

Solution: 1: Yes, every subset of $\mathbb N$ is also a subset of $\mathbb Z$. 2: No, the elements of N are numbers, and no number is an element of $\mathcal{P}(\mathbb{Z})$. 3: Yes, the empty set is an element of $\mathcal{P}(\mathbb{N})$. 4: No, the elements of $\mathcal{P}(\mathbb{Z})$ are sets of numbers, and $\mathcal{P}(\mathbb{N})$ is not a set of numbers. 5: Yes, $\mathbb N$ is a subset of $\mathbb Z$. 6: Yes, $\{1, 2, 3\}$ is a subset of $\mathbb N$.

Solution: This problem has many possible solutions. Here is an example that work: $A = \{1\}, B = \{\{1\}, 2\}, C = \{\{1\}, \{\{1\}, 2\}\}.$

Solution: 1: $\leftarrow^{\frac{7}{2}} \rightarrow 2$: The empty set because $\pm \sqrt{2}$ are irrational numbers. $3: \begin{array}{c} 3: \begin{array}{c} 1 \rightarrow \rightarrow \end{array} \end{array}$ 4: $\begin{array}{c} 3: \begin{array}{c} 2 \rightarrow \rightarrow \end{array} \end{array}$ 5: The empty set because squares can get arbitrarily

 $(0, 1)$

large, and it is impossible for a number to be bigger than every square. $6:$

	\mathbf{Q}		Q \Rightarrow		$ Q \Rightarrow R (P \Rightarrow Q) \land$ $Q \Rightarrow R$	$P \Rightarrow R$ our expression
Γ	Γ	m	௱	௱	┳	
m	௱	F				
T	F	m				
m	F	F				
F	┳	╓				
$\mathbf F$	ጥ	F				
$_{\rm F}$	F	╓				
$\mathbf F$	F	F				

Solution: We have to show that $((P \Rightarrow Q) \land (Q \Rightarrow R)) \Rightarrow (P \Rightarrow R)$ always holds.
 $P \mid Q \mid R \parallel P \Rightarrow Q \mid Q \Rightarrow R \mid (P \Rightarrow Q) \land (Q \Rightarrow R) \mid P \Rightarrow R \mid \text{our expression}$

Solution: We split the problem in two cases. Case 1: *n* is even. Then $n = 2k$ for some $k \in \mathbb{Z}$, and $n^2 + n = 4k^2 + 2k = 2(2k^2 + k)$. It follow that $\frac{1}{2}(n^2 + n) = 2k^2 + k$, which is clearly an integer. Case 2: n is odd. Then $n = 2k + 1$ for some $k \in \mathbb{Z}$, and $n^2+n=(4k^2+4k+1)+(2k+1)=2(2k^2+3k+1).$ It follow that $\frac{1}{2}(n^2+n)=2k^2+3k+1,$ which is also clearly an integer.

Solution: By definition, $a \equiv b \pmod{n}$ means that there exists an integer number k such that $a - b = kn$. We want to show that $4a \equiv 4b \pmod{2n}$, that is, there exists an integer ℓ such that $4a - 4b = \ell 2n$. For that, we may take $\ell = 2k$: $4a - 4b =$ $4(a - b) = 4kn = 2\ell n$.

Problem 1 Among the following statements, determine which ones are tautologies, and which ones are contradictions:

• $P \Rightarrow (P \Rightarrow Q)$ • $(P \land (P \Leftrightarrow Q)) \Rightarrow Q$ • $(P \land (Q \lor R)) \Leftrightarrow ((P \land Q) \lor R).$ \bullet $(P \Rightarrow Q) \land P \land (\sim Q)$

Problem 2 Prove the following statement: Given an integer $x \in \mathbb{Z}$, x is even if and only if $5 - x$ is odd.

Problem 3 Let $a, b, n \in \mathbb{Z}$ be integer numbers. Define, using mathematical symbols only, what it means that $a \equiv b \pmod{n}$.

Problem 4 Let $A := \{1, 2, 3, 4, 5\}$, and $B := \{\{1\}, \{2\}, \{3\}, \{4\}, \{5\}\}\$. Which of the following statements are true?

- $A \subseteq B$ \bullet $A \in B$ • $B \subset \mathcal{P}(A)$ • $\forall x \in B, x \subset A$ \bullet \bigcup x∈B $x = A$ • $\exists x, x \in A \cap B$ • The cardinality of $A \cup B$ is 5. • B is a partition of A . • $B \subset \mathbb{N}$.
- $\forall x \in A, \{x\} \in B$

Problem 5 For $x \in \{-10, -9, -8, \ldots, 7, 8, 9, 10\}$, consider the following sentences:

 $P(x) : x$ is odd. $Q(x) : x > 1$. $R(x) : x \in \{-1, 0, 1\}.$ For which $x \in \{-10, \ldots, 9, 10\}$ are the following statements true?

• $(\sim P(x)) \land Q(x)$ • $R(x) \Rightarrow P(x)$ • $P(x) \Leftrightarrow Q(x)$ • $Q(x) \vee R(x)$ • $\sim (Q(x) \wedge R(x)).$