
Homological algebra (Oxford, fall 2015)

André Henriques

(week 1) October 13th:
Given a ring R, the tensor product over R of a right module M with a left module N is denoted

M⊗RN . It is the abelian group generated by symbols m1⊗n1+. . .+mk⊗nk, under the equivalence
relation generated by

(m+m′)⊗ n = m⊗ n+m′ ⊗ n,
m⊗ (n+ n′) = m⊗ n+m⊗ n′,

and mr ⊗ n = m⊗ rn.

A chain complex of R-modules C• = (Cn, dn)n∈Z is a collection of R-modules Cn and R-module
maps dn : Cn → Cn−1, called ‘differentials’, subject to the unique axiom dn ◦ dn+1 = 0. This axiom
is sometimes abusively abbreviated d2 = 0.

Given a chain complex C•, we define

Zn := ker(dn)

Bn := im(dn+1)

Hn := Zn/Bn

Zn is called the ‘module of n-cycles’, Bn is called the ‘module of n-boundaries’, and Hn is called
the ‘nth homology module’ of C•. Note that the axiom d2 = 0 is equivalent to the statement that
Bn ⊂ Zn. So the quotient Hn = Zn/Bn makes sense.

A chain complex that satisfies Zn = Bn is called exact, and an exact chain complex is also called
an ‘exact sequence’. It is interesting to note that the operation −⊗Z Z/2 sends the exact sequence

. . . 0→ 0→ Z ·2−→ Z� Z/2→ 0→ 0 . . .

to the sequence

. . . 0→ 0→ Z/2 0−→ Z/2 '−→ Z/2→ 0 . . . ,

which is not exact.

Exercise 1. Show that if p and q are distinct prime numbers, then Z/p⊗Z Z/q = 0.

Exercise 2. Prove that for any abelian group A, there is a canonical isomorphism A⊗ZZ/2 ∼= A/2A.

Exercise 3. Let k be a field, and let V and W be k-vector spaces. Prove that if {v1, . . . , vn} is
a basis of V and {w1, . . . , wm} is a basis of W , then {vi ⊗ wj | i ∈ {1, . . . , n}, j ∈ {1, . . . ,m}} is a
basis of V ⊗k W .

Exercise 4. Prove that for any ring R and any left R-module M , there is a canonical isomorphism
Rn ⊗RM ∼= Mn.

Exercise 5. Show that if k is a field and if V is a k-vector space, then the operation −⊗k V , sends
exact sequences to exact sequences.

Exercises 1–5 should be handed in on Tuesday Oct 20th at 5pm in the hand-in area in the mezzanine.

October 15th:
So far, we’ve seen chain complexes (as well as exact sequences, and short exact sequences, cycles,

boundaries, homology, ...) of abelian groups and, more generally, of R-modules. Does it make sense



to talk about chain complexes of sets? How about chain complexes of groups? We’ll see that the
answer is no (or maybe one could, but they would behave very differently from chain complexes of
R-modules).

It only really makes sense to talk about chain complexes of blah’s if blah’s form an abelian category
(and the category of sets or that of groups are not abelian categories).

A category is a thing that has a collection of objects and that has, for any two objects x and y,
a set of morphisms from x to y. The collection of all morphisms from x to y is denoted Hom(x, y)
and one writes f : x → y to indicate that f is an element of Hom(x, y) (even though f might not
be a map in the set-theoretic sense). Every object x should have an identity morphism 1x : x→ x,
and there should be a composition operation

(f, g) 7→ g ◦ f : Hom(x, y)×Hom(y, z)→ Hom(x, z).

This is all subject to the axioms f ◦ 1 = f , 1 ◦ f = f , and (f ◦ g) ◦ h = f ◦ (g ◦ h).

Given two categories C and D, a functor F : C → D is a thing that sends objects of C to objects
of D, and that sends morphisms x→ y to morphisms F (x)→ F (y). It should satisfy F (1x) = 1F (x)

and F (f ◦ g) = F (f) ◦ F (g). Example: taking the nth homology module defines a functor

Hn : {Chain complexes of R-modules} → {R-modules}.
C• 7→ Hn(C•)

(f• : C• → D•) 7→ (Hn(f•) : Hn(C•)→ Hn(D•))

A terminal object is an object that admits exactly one morphism to it from any other object.
An initial object is an object that admits exactly one morphism from it to any other object. A zero
object is an object that is both initial and terminal.

A product of two objects x, y ∈ C is a diagram z //

��

x

y

that satisfies the universal property ∀z′
∃!

  

∀

''
∀

��

z //

��

x

y

Exercise 6. Check that, in the category of sets, the Cartesian product X×Y := {(x, y) |x ∈ X, y ∈
Y }, along with it two projections (x, y) 7→ x and (x, y) 7→ y, satisfies the universal property of a
product.

(week 2) October 20th:

Category: Sets Groups Ab. groups com. rings

terminal object {∗} {e} {0} {∗}
initial object ∅ {e} {0} Z
zero object 6 ∃ X X 6 ∃

product X × Y G×H A×B R× S
coproduct X t Y G ∗H A×B R⊗Z S



In a category with zero object, the zero map from X to Y is the composite of the unique map
X → 0 with the unique map 0→ Y .

The tensor product M ⊗RN , along with the map M ×N →M ⊗RN : (m,n) 7→ m⊗n, has the
following universal property. For every abelian group A and every bilinear map f : M×N → A that
satisfies f(mr, n) = f(m, rn), there is a unique linear map M ⊗R N → A that makes the diagram

A

M ×N //

44

M ⊗R N

::

commute.

Note that this cannot be expressed purely in the language of category theory, because there is no
such thing as a “bilinear morphism”.

A category enriched over (Ab,⊗Z) is a category whose hom-sets are equipped with the structure
of abelian groups, and whose composition is a morphism

Hom(A,B)⊗Z Hom(B,C) → Hom(A,C)

f ⊗ g 7→ g ◦ f

A category is called additive if it is enriched over (Ab,⊗Z), it has a zero object, and it admits finite
products.

Lemma: In an additive category, product and coproduct agree. I.e., given two objects A and
B, there are canonical maps ιA : A → A × B and ιB : A → A × B that exhibit A × B as the
coproduct of A and B. (See Kobi’s notes for a proof)

In any additive category, it is customary to write A⊕B for the product (equivalently coproduct)
of A and B.

Exercise 7. Let R and S be two commutative rings, and let R t S denote their coproduct in the
category of commutative rings. Show that the underlying abelian group of R t S is canonically
isomorphic to R ⊗Z S. Equivalently, equip R ⊗Z S with a ring structure, and construct two ring
homomorphisms R→ R⊗Z S and S → R⊗Z S which exhibit this ring as the coproduct of R and S.

Exercise∗. Guess the definition of “C is a category enriched over (D,⊗)”. Write it down on paper.
Once you’ve written it down to the best of your ability, check your answer against some online
source.

October 22nd:
The kernel of a map f : X → Y is a morhpism i : K → X which is universal w.r.t the property

that f ◦ i = 0. Dually, the cokernel of a map f : X → Y is a morhpism q : Y → C which is universal
w.r.t the property that q ◦ f = 0.

In the category of Banach spaces, taking the cokernel means modding out by the closure of the
image.

A monomorphism is a map f that satisfies f ◦ g1 = f ◦ g2 ⇒ g1 = g2. Dually, an epimorphism
is a map f that satisfies g1 ◦ f = g2 ◦ f ⇒ g1 = g2.

Definition of abelian category (see Kobi’s notes): abelian categories are the general setup in
which one can do homological algebra.

Lemma: kernels are monomorphisms; cokernels are epimorphisms.

Lemma: In an abelian category, a morphism which is simultaneously mono and epi is in fact
an isomorhpism. (See Kobi’s notes for a proof)

Exercise 8. Show that, in he category of R-modules, epimorphisms are the same thing as surjective
maps, and monomorphisms are the same thing as injective maps.

An abelian group A is called torsion-free if ∀n ∈ Z \ {0}.∀a ∈ A \ {0}.na 6= 0.



Exercise 9. Show that, in he category of torsion-free abelian groups, the morphism ·2 : Z → Z is
an epimorphism (even though it’s not surjective).

An abelian group A is called divisible if ∀n ∈ Z \ {0}.∀a ∈ A.∃b ∈ A.nb = a.

Exercise 10. Show that, in he category of divisible abelian groups, the projection Q → Q/Z is a
monomorphism (even though it’s not injective).

Exercise 11. Show that, in an additive category, a morphism f : X → Y is a monomorphism if
and only if its kernel is zero.

Exercises 6–11 should be handed in on Tuesday Oct 27th at 5pm in the hand-in area in the mezzanine.

(week 3) October 27th:

A sort exact sequence 0→ A
ι→ B

π→ C → 0 is split if there exists a splitting s : C → B of the
map π : B → C, equivalently, if the map ι : A → B admits a retraction r : B → A. As opposed
to the property of being a short exact sequence, the property of being a split short exact sequence
is equationally defined (see Exercise 12). It follows that additive functors always send split short
exact sequences to split short exact sequences.

An exact functor is one that sends short exact sequences to short exact sequences. A right exact
functor is an additive functor such that for every short exact sequence 0 → A

ι→ B
π→ C → 0 the

sequence FA
Fι→ FB

Fπ→ FC → 0 is exact. A left exact functor is one such that 0→ FA
Fι→ FB

Fπ→
FC is exact.

Lemma 1. The functor −⊗R N is right exact.

Proof. Given a short exact sequence of right R-modules 0 → A
ι→ B

π→ C → 0, we need to show
that A⊗R N → B ⊗R N → C ⊗R N → 0 is exact. The surjectivity of B ⊗R N → C ⊗R N is easy,
so let us focus on the harder argument: given an element

∑
bi ⊗ ni ∈ B ⊗R N that goes to zero in

C ⊗R N , we need to show that it comes from A⊗R N .
Since

∑
π(bi) ⊗ ni = 0 in A ⊗R N , there exist elements c′α, c′′α, nα, cβ , n′β , n′′β , cγ , rγ , nγ such

that ∑
i

π(bi)⊗ ni +
∑
α

(c′α + c′′α)⊗ nα − c′α ⊗ nα − c′′α ⊗ nα

+
∑
β

cβ ⊗ (n′β + n′′β)− cβ ⊗ n′β − cβ ⊗ n′′β

+
∑
γ

cγrγ ⊗ nγ − cγ ⊗ rγnγ

is zero in the free abelian group on the set of symbols “c ⊗ n”. If we mod out that free abelian
group by the first set of relations (c′ + c′′) ⊗ n = c′ ⊗ n + c′′ ⊗ n, then we get the abelian group⊕

n∈N C. So, another way of saying that
∑
π(bi)⊗ ni is zero in A⊗R N is to say that there exist

elements cβ , n′β , n′′β , cγ , rγ , nγ such that∑
i

π(bi)⊗ ni +
∑
β

cβ ⊗ (n′β + n′′β)− cβ ⊗ n′β − cβ ⊗ n′′β +
∑
γ

cγrγ ⊗ nγ − cγ ⊗ rγnγ = 0 in
⊕
n∈N

C,

where “c⊗ n” now stands for the element c put in the n-th copy of C.
Pick preimages bβ , bγ ∈ B of cβ , cγ ∈ C, and consider the element

y :=
∑
i

bi ⊗ ni +
∑
β

bβ ⊗ (n′β + n′′β)− bβ ⊗ n′β − bβ ⊗ n′′β +
∑
γ

bγrγ ⊗ nγ − bγ ⊗ rγnγ ∈
⊕
n∈N

B.

This element goes to 0 in
⊕

n∈N C and therefore comes from some x ∈
⊕

n∈N A.
Let [x] denote the image of x in A ⊗R N and let [y] denote the image of y in B ⊗R N . Since

x 7→ y, it follows that [x] 7→ [y]. We are done since [y] =
∑
i bi ⊗ ni in B ⊗R N .



Exercise 12. Let A, B, C be objects of an abelian category, and let ι : A → B, π : B → C,
s : C → B, r : B → A be morphisms such that π ◦ ι = 0, π ◦ s = 1C , r ◦ ι = 1A, s ◦ π + ι ◦ r = 1B .
Show that (1) ι and s exhibit B as the sum of A and C;1 (2) π and r exhibit B as the product of
A and C; (3) ι and π form a short exact sequence; (4) s and r form a short exact sequence.

Exercise 13. Let C be an abelian cateogry. Show that Hom(M,−) : C → Ab and Hom(−, N) :
Cop → Ab are left exact. Namely, given a short exact sequence 0 → A → B → C → 0 in C show
that the sequences

0→ Hom(M,A)→ Hom(M,B)→ Hom(M,C)

and 0→ Hom(C,N)→ Hom(B,N)→ Hom(A,N)

are exact. Illustrate with examples that the above two functors are typically not exact.

October 29th: A module P is projective if HomR(P,−) is exact. A module I is injective if
HomR(−, I) is exact. A module F is flat if − ⊗R F is exact. Equivalently, P is projective if for
every solid arrow diagram there exists a dotted arrow making the diagram commute:

P

��

∃

��
B // // C

In the same vein, I is injective if for every solid arrow diagram there exists a dotted arrow making
the diagram commute:

I __
∃

==

A // // B

Finally, a module is flat iff for every A� B, the corresponding map A⊗R F → B⊗R F is injective.

Lemma 2. An R-module is projective iff it’s a direct summand of a free module.

Proof. Let P be projective. Pick a surjective map from a free module π : F � P . Since P is
projective, π admits a splitting s : P → F , the short exact sequence 0 → ker(π) → F → P → 0
splits, and F = P ⊕ ker(π).

If R = (functions on some space X), and V → X is a vector bundle over X, then the set of
sections of V is a projective module over R.

Lemma 3. An abelian group is injective iff it is divisible.

Proof. • Injective ⇒ Divisible: Let I be injective, and let x ∈ I be an element. Given m ∈ N, we
need to show that ∃y ∈ I such that my = x. Let 〈x〉 ⊂ I be the subgroup generated by x. Consider
the diagram

I

I

id

OO

// // (I ⊕Q)/{(bx, b) : b ∈ Z}

∃

hh

or

I

I

id

OO

// // (I ⊕Q/nZ)/{(bx, b) : b ∈ Z/nZ}

∃

ii

depending on whether 〈x〉 ∼= Z or 〈x〉 ∼= Z/nZ. Let y ∈ I be the image of the element [(0,−1/m)]
under the dotted map. Then my is the image of [(0,−1)] = [(x, 0)]. But [(x, 0)] is the image of x
under the horizontal map, so my = x.

1The terms “sum” and “coproduct” are synonyms.



• Divisible ⇒ Injective: Let D be divisible. We consider an extension problem

D ``
∃?

<<

A // // B

Let A = A0 ⊂ A1 ⊂ A1 ⊂ . . . ⊂ Aα ⊂ . . . ⊂ B be a sequence of subgroups indexed by ordinals, such
that Aα+1 = 〈Aα, bα〉 for some element bα ∈ B, and Aα =

⋃
β<αAβ when α is a limit ordinal. By

transfinite induction, it’s enough to solve the extension problem

D bb
∃?

<<

Aα // // Aα+1

If the map Aα ⊕ Z→ Aα+1 : (a, n) 7→ a+ nbα is injective, then Aα+1 = Aα ⊕ Z and we may define
the dotted arrow Aα+1 → D to send bα 7→ 0.

If the map Aα ⊕ Z→ Aα+1 : (a, n) 7→ a+ nbα has a kernel, call it K, then that kernel is cyclic,
generated by some element: K = 〈(a0, n0)〉. Let d be the image of a0 in D, and let e ∈ D be an
element such that n0e = d. Then bα 7→ −e defines a map Aα+1 = (Aα ⊕ Z)/K → D.

An abelian group is injective iff it’s a
⊕

of (possibly infinitely many) copies Q and Z[ 1p ]/Z.

Given a field k, a k[x]-module is injective iff it’s a
⊕

of (possibly infinitely many) copies k(x) and
k[y, y−1]/k[y] for y = x− a, a ∈ k.

Exercise 14. Prove that, in the category of abelian groups, every projective module is free. More
generally, if R is a principal ideal domain, prove that in the category of R-modules every projective
module is free.

Exercise 15. [2] Show that an abelian group is injective iff it’s a
⊕

of (possibly infinitely many)
copies Q and Z[ 1p ]/Z.

Hint: Work by transfinite induction. Pick a non-zero element x ∈ I. If it’s not torsion, construct
a map Q → I, and use it to write I as a direct sum I = I0 ⊕ Q. If it’s torsion, assume wlog
that its order is of the form pn, construct a map Z[ 1p ]/Z → I, and use it to write I as a direct

sum I = I0 ⊕ Z[ 1p ]/Z → I. Don’t forget to include a discussion of what happens at limit ordinals.
Alternatively, you may use Zorn’s lemma.

Exercises 12–15 should be handed in on Tuesday Nov 3rd at 5pm.

(week 4) November 3rd:
Stated without proof (or any kind of further explanation): If R is a commutative Noetherian

ring, then there is a classification theorem for injective R-modules. For every prime ideal p ⊂ R,
there is a certain injective module Ip, and any injective module is a direct sum of (possibly infinitely
many) such.

Lemma 4. A Z-module is flat iff it’s torsion free.

Proof. ⇒: If A is not torsion free, then

∃n ∈ N s.t. A⊗Z (Z ·n→ Z) = (A⊗Z Z ·n→ A⊗Z Z) = (A
·n→ A)

2Exercise 15 will be marked a first time, and handed back to you. If you wish to improve your answer, you may
hand it in a second time the next week.



is not injective. Hence A is not flat.
⇐: Assume A is torsion free. Write A as

A = colimα∈P Aα

where P is the poset of finitely generated subgroups of A, and Aα ⊂ A is the subgroup that
corresponds to α (which is to say Aα := α). By the classification theorem of finitely generated
abelian groups, since each Aα is a finitely generated torsion-free abelian group, it’s a free Z-module.
In particular, Aα ⊗Z − preserves monomorphisms. Given any Z-module M , we have

A⊗Z M = (colimα∈P Aα)⊗Z M = colimα∈P (Aα ⊗Z M), (1)

where the last equality is justified in Exercise 17. Therefore

A⊗Z (M1�M2) = colimα∈P
(
Aα ⊗Z (M1�M2)︸ ︷︷ ︸

injective because Aα is free

)
︸ ︷︷ ︸

injective because colimα∈P preserves monomorphisms

and so A is flat. The very last step is justified in Exercise 18. It depends crucially on the fact that
that P is a directed poset, i.e., that ∀x, y ∈ P , ∃z ∈ P s.t. z ≥ x and z ≥ y.

A colimit (also called direct limit) of a diagram is an object to which all the things in the diagram
map, and which is universal w.r.t. that property:

colim


A //

''

C

  ))

// E //

$$

G . . .

B //

>>

D //

55

F // H . . .

 =

A //

''

C

  ''

// E //

  

G . . .

B //

>>

D //

77

F // H . . .

Z
(( **++,,  %%''))

(all little triangles commute)

s.t. for any other Z ′ with maps A → Z ′, B → Z ′, etc making the little triangles commute there
exists a unique map Z → Z ′ s.t. yet more triangles commute. If the diagram is indexed by a directed
poset, and if all the maps involved are inclusions, then ‘colimit’ is just the same thing as ‘union’.
The direct limit is denoted lim−→.

The dual notion to a colimt is is called a limit equivalently an inverse limit. The inverse limit is
denoted lim←−.

A projective resolution of an object M of some abelian category is a chain complex P• = (Pn, dn :
Pn → Pn−1) s.t. each Pn is projective, Pn = 0 for n < 0, and Hi(P•) is concentrated in degree zero,
where it’s M . An injective resolution of an object M of some abelian category is a cochain complex
I• = (In, dn : In → In+1) s.t. each In is injective, In = 0 for n < 0, and Hi(I•) is concentrated
in degree zero, where it’s M . A free resolution is a projective resolution s.t. all the Pn’s are free.
Here’s how you build a free resolution:

···

ker

∩

ker

∩

ker

∩

F3

== ==

F2

== ==

F1

== ==

F0
// // M.



The free resolution is then given by F• = (. . . → F3 → F2 → F1 → F0 → 0 → 0 . . .). Dually,
injective resolutions are built in the following way:

coker$$

$$

coker""

""

""

""
···

M // // I0

OOOO

I1

OOOO

I2

For such constructions to be possible, the abelian category needs to have enough projectives (re-
spectively enough injectives), meaning that each object admits an epimorphism from a projective
(a monomorphism to an injective).

The Tor and Ext groups are defined as follows:

Let M be a right R-module and N a left R-module. Then:

TorRi (M,N) = Hi(P• ⊗R N) = Hi(M ⊗R Q•)

where P• is a projective resolution of M or Q• is a projective resolution of N . Implicit in the above
definition is the fact that TorRi (M,N) doesn’t depend on the choice of projective resolution, and
doesn’t depend on whether one resolves M or N (or both).

Let M and N be R-modules (either both right modules or both left modules). Then:

ExtiR(M,N) = Hi(HomR(P•, N)) = Hi(HomR(M, I•)).

Here, P• is a projective resolution of M and I• is an injective resolution of N . Once again, the
choice of resolution doesn’t matter, neither does the choice of which of the two modules one decides
to resolve.

Exercise 16. Disprove the following statement: “every torsion-free abelian group without p-
divisible elements is free”.

Exercise 17. Let P be a directed poset,3 and let {Nα}α∈P be a diagram of right R-modules (and
let’s not assume that the maps in the diagram are injective). Show that for any left R-module M ,
there is a canonical isomorhpism

(colimα∈P Nα)⊗RM ∼= colimα∈P (Nα ⊗RM).

Exercise 18. Let {Nα}α∈P and {Mα}α∈P be two diagams of R-modules indexed by the same
poset P . Let us also assume that P is a directed poset. Let {fα : Nα → Mα}α∈P be a natural
transformation between the above two diagrams (see Lecture 3 of Kobi’s notes for a definition).
Show that if each fα is a monomorphism, then

colimfα : colimNα → colimMα

is also a monomorphism
This exercise can be interpreted in the following way: let (R-Mod)P denote the abelian category

whose objects are P -indexed diagrams of R-modules, and whose morphisms are natural transfor-
mations between such diagrams. Then the functor

colim : (R-Mod)P −→ R-Mod

is exact.

3The result is also true for arbitrary posets. But then, you just can’t use the interpretation of ‘colim’ as ‘union
modulo relations’. For example, the direct sum is an instance of a colimit.



Exercise 19. Compute all the entires of the following tables:

TorZ1 (A,B) Z Z/mZ Q Q/Z
Z

Z/nZ
Q

Q/Z

and

Ext1Z(A,B) Z Z/mZ Q Q/Z
Z

Z/nZ
Q

Q/Z

Hint: some of the above Ext groups are best expressible in terms of the profinite completion Ẑ of
Z. The profinite completion of Z is the inverse limit of all the Z/nZ, where the indexing poset is N
ordered by ‘a divides b’. Equivalently, Ẑ = lim←−

n∈N
Z/n!Z with the usual order on N.

Exercises 16–20 should be handed in on Tuesday Nov 10th at 5pm.

November 5th:
I started by computing Tork[x,y]∗

(
k[x, y]/(x, y), k[x, y]/(x− a, y − b)

)
. It’s identically zero unless

(0, 0) = (a, b).
The homological dimension of a (let’s say commutative) ring is the max over all R-modules of the

shortest possible length of a projective resolution. This number turns out to also be the max over
all modules of the length of a shortest injective resolution. If the ring is not commutative, then you
can do this with left modules, and you can do this with right modules, and there’s no guarantee that
those two notions of homological dimension should agree: there’s the homological dimension of the
category of left R-modules (which one can compute using either injective or projective resolutions),
and there’s the homological dimension of the category of right R-modules.

Example: Every subgroup of a free abelian group is free, and so hdim(Z) = 1. The same
can be concluded from the observation that every quotient of a divisible group is divisible. As a
consequence, in the category of Z-modules, Torn(A,B) = 0 and Extn(A,B) = 0 for every n ≥ 2.

Example: If R = OX is the ring of functions on some smooth affine variety X (defined over some
field), then hdim(OX) = dim(X).

Example: hdim(Z/p2) =∞, as can be seen from computing TorZ/p
2

∗ (Z/p,Z/p).

Given a right exact functor F : C → D between abelian categories, the n-th left derived functor
is given by

LnF : M 7→ Hn(F (P•))

where P• is a projective resolution of M . The right derived functor of a left exact functor is defined
similarly:

RnF : M 7→ Hn(F (I•))

where I• is now an injective resolution.

Lemma 5. Let F : C → D be a right exact functor. Then L0F = F (and similarly R0F = F is F
is left exact).

Proof. We must show that L0F (M) = F (M). The former is computed as

L0F (M) = H0

(
. . .

F (d2)→ F (P1)
F (d1)→ F (P0)→ 0

)
= F (P0)

/
im(F (d1)),

where P• is a projective resolution of M . Now

0→ P1/ ker(d1)→ P0 →M → 0

is exact, and so
F (P1/ ker(d1))→ F (P0)→ F (M)→ 0



is also exact. Since P1 → P1/ ker(d1) is epi and F preserves epis, the map F (P1)→ F (P1/ ker(d1))
is epi, from which we deduce that the sequence

F (P1)
F (d1)→ F (P0)→ F (M)→ 0

is also exact. We conclude that F (M) = F (P0)
/

im(F (d1)), as desired.

A useful fact for computing Tor is that if P is a filtered poset, we have

Tor(colimMα, N) = colim Tor(Mα, N)

Warning! The corresponding reasonable statement that one might conjecture for Ext fails miserably:

Ext(colimMα, N) 6= lim Ext(Mα, N) Ext(M, limNα) 6= lim Ext(M,Nα)

(week 5) November 10th:
There are two ways of making the operation “take a projective resolution” into a functor:

(1) Take P0 to be the free R-module on the underlying set of M . Take P1 to be the free R-module
on the underlying set of ker(P0 → M). Take P2 to be the free R-module on the underlying set of
ker(P1 → P0). Etc. This construction has the advantage that if say a group G acts on M , then
that group will also automatically act on the resolution P• of M .

(2) View the operation “take a projective resolution” as a functor from our abelian category C to
its derived category D(C).

Definition: Let A be an abelian category. It’s derived category D(A) has:
• Object = chain complexes of projectives of A
• Morphisms = chain maps modulo chain homotopy. (see Lecture 7 of Kobi’s notes for a definition)

The notion of chain homotopy is made so that whenever f• : C• → D• and g• : C• → D• are chain
homotopic maps, then H∗(f•) = H∗(g•) : H∗(C•)→ H∗(D•). The fact that

“take any projective resolution” : A → D(A)

is a functor is proved in Prop 7.2 of Lecture 7 of Kobi’s notes.

Here’s a way of defining the nth derived functor of some right exact functor F : A → B:

LnF : A
take projective

resolution−−−−−−−−−−→ D(A)
apply F−−−−−→

(
Ch(B);

chain maps modulo
chain homotopy

)
Hn−−→ B

The total derived functor of F , or simply “the derived functor of F” is the functor

LF : A
take projective

resolution−−−−−−−−−−→ D(A)
apply F−−−−−→

(
Ch(B);

chain maps modulo
chain homotopy

) take projective
resolution−−−−−−−−−−→ D(B).

Exercise 20. Let R be a ring and let r ∈ R be a non-zero-divisor. Show that TorR1 (R/rR,−) is
the functor which sends a module to its submodule of r-torsion elements.4

Exercise 21. Consider the following two proofs:

4This is where the notation “Tor” comes from.



Lemma A: Let {Mα}α∈P be a diagram of R-
modules indexed by some filtered poset P . Then
we have a canonical isomorphism

Torn(colimMα, N) = colim Torn(Mα, N).

Proof. Let Fα• be the canonical free resolution of
Mα. Then F• := colimα∈PF

α
• is the canonical

free resolution of M := colimα∈PMα. We then
have

colimα∈P TorRn (Mα, N)

= colimα∈P Hn(Fα• ⊗R N)

=Hn(colimα∈P (Fα• ⊗R N))

=Hn((colimα∈P F
α
• )⊗R N)

=Hn(F• ⊗R N) = TorRn (M,N).

Lemma B: Let {Mα}α∈P be a diagram of R-
modules indexed by some filtered poset P . Then
we have a canonical isomorphism

Extn(colimMα, N) = lim Extn(Mα, N).

Proof. Let Fα• be the canonical free resolution of
Mα. Then F• := colimα∈PF

α
• is the canonical

free resolution of M := colimα∈PMα. We then
have

limα∈P ExtRn (Mα, N)

= limα∈P H
n(HomR(Fα• , N))

=Hn(limα∈P (HomR(Fα• , N)))

=Hn(HomR(colimα∈PF
α
• , N))

=Hn(HomR(F•, N)) = ExtnR(M,N)

Lemma A is correct and its proof is correct, but Lemma B is wrong and its proof is flawed. Find the
error in the proof of Lemma B, and illustrate the mistake by providing a counterexample. Explain
(by filling the details of the proof) why the corresponding step in the proof of Lemma A is ok.

Exercise 22. [5] Let A and C be two objects of some abelian category. Show that there is a
canonical bijection between the abelian group Ext1(C,A) and the set of isomorphism classes of
extension 0 → A → B → C → 0.6 Here, two extensions (= short exact sequences) are called
isomorphic if they fit into a commutative diagram

0 // A

idA
��

// B

'
��

// C

idC
��

// 0

0 // A // B′ // C // 0

The main steps are as follows:
I Given an extension 0 → A → B → C → 0 and a resolution P• → C, construct a map of chain
complexes from (P• → C → 0) to (0→ A→ B → C → 0).
I Use this to define an element of Ext1(C,A).
I Show that the resulting element of Ext1(C,A) does not depend on the choice of map from
(P• → C → 0) to (0→ A→ B → C → 0).
I Given an element of Ext1(C,A) represented by a map P1 → A for some resolution P• → C, define
the group B := (P0 ⊕A)/P ′1, where P ′1 is the quotient of P1 by the image of d2 : P2 → P1.
I Show that B fits into a short exact sequence 0→ A→ B → C → 0.
I Show that this short exact sequence does not depend on the choice of resolution P• → C.
I Finally, show that the above constructions are each other’s inverses.

Exercises 20–22 should be handed in on Tuesday Nov 17th at 5pm.

November 12th:
A quasi-isomorhpism is a map C• → D• between chain complexes, which induces an isomor-

phism in homology H∗(C•)
'→ H∗(D•). A projective resolution of a chain complex C• is a quasi-

isomorhpism from a complex of projective modules. If the ambient abelian category has enough
projectives, and C• is bounded below, then projective resolutions always exist.

5Exercise 22 will be marked a first time, and handed back to you. If you wish to improve your answer, you may
hand it in a second time the next week.

6This is where the notation “Ext” comes from.



If 0→ A→ B → C → 0 is a short exact sequence and F is a right exact functor, then there’s a
long exact sequence

. . . . . . . . .

rr
L2F (A) // L2F (B) // L2F (C)

ss
L1F (A) // L1F (B) // L1F (C)

ss
F (A) // F (B) // F (C) // 0

(2)

A similar story applies to left exact functors. The main examples which are relevant to us are:

. . . . . . . . .

rr
TorR2 (A,M) // TorR2 (B,M) // TorR2 (C,M)

rr
TorR1 (A,M) // TorR1 (B,M) // TorR1 (C,M)

rr
A⊗RM // B ⊗RM // C ⊗RM // 0

and
. . . mm . . . . . .

Ext2R(C,M) //ll Ext2R(B,M) // Ext2R(A,M)

Ext1R(C,M) //ll Ext1R(B,M) // Ext1R(A,M)

0 // HomR(C,M) // HomR(B,M) // HomR(A,M)

and
. . . mm . . . . . .

Ext2R(N,A) //ll Ext2R(N,B) // Ext2R(N,C)

Ext1R(N,A) //ll Ext1R(N,B) // Ext1R(N,C)

0 // HomR(N,A) // HomR(N,B) // HomR(N,C)

The proof of equation (2) goes as follows:
• Start with 0→ A→ B → C → 0.
• Take projective resolutions while being careful not to destroy the fact that it’s a short exact
sequence:

0→ P• → Q• → R• → 0.

This can be done by virtue of the “horseshoe lemma” (see Kobi’s notes: Lemma 6.5 of lecture 6).
Note that each 0→ Pn → Qn → Rn → 0 is split exact.
• Apply F . Since additive functors preserve split exact sequences (because they are equationally
defined), we get a short exact sequence of chain complexes

0→ F (P•)→ F (Q•)→ F (R•)→ 0.



• Take homology, and use the fact that the homology of a short exact sequence of chain complexes
always yields a long exact sequence of homology groups (see Kobi’s notes: Lemma 6.7 of lecture 6).

(week 6) November 17th:

Today, I did a review of direct limits and inverse limits.
Let P be a poset, and let

(
{Aα}α∈P , {ια,β : Aα → Aβ}α<β

)
be a diagram of abelian groups (or

R-modules). Then we can form the direct limit

colim
α∈P

Aα.

This direct limit admits the description

colim
α∈P

Aα =
∐
α∈P

Aα

/
∼ (where ∼ is the equivalance relation

generated by a ∼ ια,β(a) for a ∈ Aα)

only when P is a directed poset. Otherwise,
∐
Aα/ ∼ is not even a group (how would you add two

elements?), and one needs to use a description of the form
⊕

α∈P Aα/ ∼ instead.

Given a poset P and a diagram
(
{Aα}α∈P , {πα,β : Aβ → Aα}α<β∈P

)
, the inverse limit admits

the following explicit description:

lim
α∈P

Aα =
{

(aα) ∈
∏
α∈P

Aα

∣∣∣ πα,β(aβ) = aα ∀α < β ∈ P
}

Here are some important examples of limits and colimits:

colim
(
A ↪→ A2 ↪→ A3 ↪→ A4 ↪→ . . .

)
=

∞⊕
A

lim
(
A� A2 � A3 � A4 � . . .

)
=

∞∏
A

colim
(
Z/p ↪→ Z/p2 ↪→ Z/p3 ↪→ Z/p4 ↪→ . . .

)
= Z[ 1p ]/Z

lim
(
Z/p� Z/p2 � Z/p3 � Z/p4 � . . .

)
= Zp (the p-adic integers)

colim
(
Z/2! ↪→ Z/3! ↪→ Z/4! ↪→ Z/5! ↪→ . . .

)
= Q/Z

lim
(
Z/2!� Z/3!� Z/4!� Z/5!� . . .

)
= Ẑ (the profinite completion of Z)

Here, the p-adic integers is a ring (not just a group) whose elements are formal sums
∑∞
i=0 anp

n for
an ∈ {0, 1, 2, . . . , p−1}. It is useful to think of an element

∑∞
i=0 anp

n as an “infinite number written
in base p” : . . . a4a3a2a1a0. If one decides to also allow finitely many p-adic digits after the comma,
then one gets the field Qp of p-adic numbers. An element of Qp is therefore a formal expression of the
form

∑∞
i=N anp

n for some N ∈ Z. The field of p-adic rationals admits the alternative descriptions
Qp = Zp[ 1p ] and Qp = Zp ⊗Z Q.

We have isomorphisms:

Q/Z =
⊕

p:prime

Z[ 1p ]/Z

Ẑ =
∏

p:prime

Zp

Hom
(
Z[ 1p ]/Z , Z[ 1p ]/Z

)
= Zp



Hom
(
Q/Z,Q/Z

)
= Ẑ

Hom
(
Z[ 1p ] , Z[ 1p ]/Z

)
= Qp

Hom
(
Q,Q/Z

)
= Ẑ⊗Z Q

which we leave as exercises.
We can use all this to compute Ext1(Q,Z). Using an injective resolution of Z, we get:

Ext1(Q,Z) = H1
(

Hom(Q,Q)→ Hom(Q,Q/Z)→ 0
)

= H1
(
Q→ Ẑ⊗Z Q→ 0

)
=

Ẑ⊗Z Q
Q

(a Q-vector space of uncountable dimension)

November 19th:

Let C be an abelian category, and let A ∈ C be an object. A generalised element of A is a
morphism P → A, where P ∈ C is projective. If a is a generalised element of A and f : A→ B is a
morphism in C, we write f(a) for f ◦ a.

Lemma: A morphism f : A→ B is zero iff every generalized element a of A maps to zero.

Lemma: A morphism f : A → B is a monomorphism iff every generalized element a of A that
maps to zero has the property that it is itself zero.

Lemma: A morphism f : A→ B is an epimorphism iff every for every generalized element b in B
∃ a generalized element a of A that maps to it.

Lemma: Let A→ B → C be two maps that compose to zero. The sequence A→ B → C is exact
in the middle iff for every generalized element b of B that maps to zero in C ∃ a generalized element
a of A that maps to it.

Then I proved by diagram chasing that[
Short exact sequence
of chain complexes

]
Take cohomology−−−−−−−−−−−−−−−−−→

[
Long exact sequence of
cohomology groups

]
(For a proof, see Proposition 6.7 in lecture 6 of Kobi’s notes.)

(week 7) November 24th:

A bigraded chain complex is a two-dimensional array C•• = (Cn,m)n,m∈Z of modules (or objects
of some arbitrary abelian category) equipped with horizontal differentials dh : Cn,m → Cn−1,m and
vertical differentials dv : Cn,m → Cn,m−1 satisfying d2h = 0, d2v = 0, and dhdv = −dvdh. Those three
equations together are equivalent to the statement that D := dh + dv acting on Tot(C••) satisfies
D2 = 0. Here, Tot(C••) is the chain complex that has

⊕
p+q=n Cp,q in degree n.

Lemma (Lemma 9.3 in Kobi’s notes): If C•• is bounded below, and dh is exact, then D is exact.

November 26th:

I proved that given modules M and N , the two ways of computing Tor(M,N) agree: you can
either resolve M , or resolve N , or both. This is proved by showing that the maps

M ⊗Q• ← Tot(P• ⊗Q•)→ P• ⊗N

are quasi-isomorhpisms, where P• → M is a projective resolution and Q• → N is a projective
resolution.



Actually, if P• → M is a projective resolution and Q• → N is any quasi-isomorphism (not
necessarily a projective resolution), then we still have that

Tot(P• ⊗Q•)→ P• ⊗N

is a quasi-isomorhpism.
The corresponding statement for Hom and Ext is that

Hom(P•, N)→ Tot Hom(P•, I
•)← Hom(M, I•)

are quasi-isomorhpisms, where P• → M is a projective resolution and N → I• is an injective
resolution.

If we decided to take a projective resolution N ← Q• instead, then we have a quasi-isomorphism

Hom(P•, N)← T̂ot Hom(P•, Q•)

provided we replace Tot by T̂ot: the version of Tot that uses
∏

instead of
⊕

.
Definition: The internal hom of two chain complexes A• and B• is defined to be the chain

complex
Hom(A•, B•) := T̂ot Hom(A•, B•).

Given a chain complex A•, we define A•[n] to be the same thing, but with its grading shifted by
−n.

Exercise 23. Let A• and B• be two chain complexes. Show that there is a canonical isomorhpism
between

Hn

(
Hom(A•, B•)

)
and the group of chain maps A• → B•[n] modulo chain homotopy.

Exercise 24. Recall that an additive functor between abelian categories is called exact is it preserves
short exact sequences. Prove that an exact functor preserves (not necessarily short) exact sequences.

Exercises 23–24 should be handed in on Tuesday Dec 1st at 5pm.

(week 8) December 1st:
Ring structure on Ext∗k(M,M).

Example: Ring structure on Ext∗k[x]/x2(k, k).

Example: Ring structure on Ext∗k[x]/x3(k, k).

December 3rd: Group cohomology. (see the last 3 lectures of Kobi’s course, last year).
The bar resolution

Z[G]G×G×G → Z[G]G×G → Z[G]G → Z[G]→ Z

The proof that it’s a resolution.

Definition of group cohomology (case when the coefficients don’t have any action by G).

Interpretation of H1(G,A) as homomorphisms G→ A.

Interpretation of H2(G,A) as central extensions of G by A.


