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Week 1
I recalled the notions of ring, modules, and the fact that Z-modules are the same thing as abelian

groups. The direct sum of R-modules Mi is defined by⊕
i∈I

Mi :=
{
f : I →

⋃
i∈I

Mi

∣∣∣ f(i) ∈Mi and #{i ∈ I : f(i) = 0Mi
} <∞

}
.

The product of modules Mi is given by∏
i∈I

Mi :=
{
f : I →

⋃
i∈I

Mi

∣∣∣ f(i) ∈Mi

}
.

The R-module structure is given by (f + g)(i) = f(i) +Mi
g(i) and (r · f)(i) = r ·Mi

(f(i)).
An inclusion of of R-modules N ⊂ M is called split if there exists another submodule N ′ ⊂ M

such every element of M can be uniquely written as a sum of an element of N and an element of
N ′. Example: the inclusion Z/2 ↪→ Z/4 is not split, but the inclusion Z/2 ↪→ Z/6 is split.

Given a ring R, the tensor product over R of a right module M with a left module N is denoted
M⊗RN . It is the abelian group generated by symbols m1⊗n1+. . .+mk⊗nk, under the equivalence
relation generated by

(m+m′)⊗ n = m⊗ n+m′ ⊗ n,
m⊗ (n+ n′) = m⊗ n+m⊗ n′,

and mr ⊗ n = m⊗ rn.

A chain complex of R-modules C• = (Cn, dn)n∈Z is a collection of R-modules Cn and R-module
maps dn : Cn → Cn−1, called ‘differentials’, subject to the axiom dn ◦ dn+1 = 0. This axiom is
sometimes abusively abbreviated d2 = 0. A chain complex is called exact if ker(dn) = im(dn+1).

A functor is called exact if it sends exact sequences to exact sequences.

Exercise 1. Let R := R[x]/x2. Prove that the obvious inclusion of R-modules R/x ↪→ R is not
split.

Exercise 2. Let R := M2(Z) be the ring of two-by-two matrices with integer coefficients. Show
that the R-module R can be written as a direct sum of two smaller R-modules.

Exercise 3. Show that if p and q are distinct prime numbers, then Z/p⊗Z Z/q = 0.

Exercise 4. Prove that for any abelian group A, there is a canonical isomorphism A⊗ZZ/2 ∼= A/2A.

Exercise 5. Let R := Z[x]. Compute HomR(R/2x,R/4) as an R-module. Show that it is isomor-
phic to R/I for some ideal I ⊂ R.

Exercise 6. Provide an example of a ring R and two modules M and N such that the abelian
group HomR(M,N) does not carry the structure of an R-module.

Week 2 A zero object is an object that admits exactly one morphism to it from any other object
and exactly one morphism from it to any other object.

A monomorphism is a morphism f that satisfies (f ◦ g1 = f ◦ g2) ⇒ (g1 = g2). Equivalently,
it is a morphism f : X → Y with the property that whenever two morphisms g1, g2 : Z → X are



distinct, they remain distinct after composing them with f . Dually, an epimorphism is a map f
that satisfies (g1 ◦ f = g2 ◦ f)⇒ (g1 = g2).

The direct sum of two objects X1 and X2 is an object Z equipped with maps i1 : X1 → Z,
i2 : X2 → Z, p1 : Z → X1, p2 : Z → X2 satisfying p1 ◦ i1 = id, p2 ◦ i2 = id, p1 ◦ i2 = 0, p2 ◦ i1 = 0,
and i1 ◦ p1 + i2 ◦ p2 = id.

An pre-additive category is a category such that all the hom-sets are equipped with the structure
of abelian groups and such that composition Hom(x, y) × Hom(y, z) → Hom(x, z) is bilinear. An
additive category is a category which is preadditive, admits a zero object, and admits all direct
sums.

The kernel of a map f : X → Y is a morphism i : K → X which is universal w.r.t the property
that f ◦ i = 0. This means the following: it’s an object K along with a morphism i : K → X
satisfying f ◦ i = 0, such that for every object K̃ and every morphism ĩ : K̃ → X satisfying f ◦ ĩ = 0,
there exists a unique morphism g : K̃ → K such that ĩ = i ◦ g.

Dually, the cokernel of a map f : X → Y is a morhpism q : Y → C which is universal w.r.t the
property that q ◦ f = 0.

A colimit (also called direct limit) of a sequence of morphisms X1 → X2 → X3 → . . . is an
object Z along with morphisms Xi → Z such that

all little triangles commute

X1
// X2

// X3
// X4

// . . .

Z
  

···

((**++,,

and such that for every other diagram

X1
// X2

// X3
// X4

// . . .

Z̃
��

···

""&&((**

all of whose little triangles commute

there exists a unique morphism Z → Z̃ such that all the triangles in this big diagram commute:

X1
// X2

// X3
// X4

// . . .

Z
  

···

((**++,,

Z̃
��

···

  %%(())
��

The colimit can be denoted colimXi or lim−→Xi. Quite often ‘colimit’ means the same thing as ‘union’.
The dual notion is called a limit. It is denoted limXi or lim←−Xi.

An additive category is called abelian if every monomorphism is the kernel of its cokernel and
every epimorphism is the cokernel of its kernel. By this, we mean that for every monomorphism
f : x → y, the canonical morphism from x to ker(y → coker(f)) is an isomorphism (and similarly
for the second condition, which concerns epimorphisms).

An additive functor between abelian categories is called exact if it sends exact sequences to exact
sequences, equivalently, if it sends short exact sequences to short exact sequences. Note that the



functor −⊗Z Z/2 is not exact: it sends the exact sequence

0→ Z ·2−→ Z � Z/2→ 0

to the sequence 0 → Z/2 0−→ Z/2 '−→ Z/2 → 0 which is not exact. Similarly, the functor
HomZ(Z/2,−) sends the exact sequence

0→ Z ·2−→ Z � Z/2→ 0

to the sequence 0 → 0 → 0 → Z/2 → 0 which is not exact. Finally, the contravariant functor
HomZ(−,Z/2) sends the exact sequence

0→ Z ·2−→ Z � Z/2→ 0

to the sequence 0 ← Z/2 0←− Z/2 '←− Z/2 ← 0 which is not exact. The functors − ⊗Z Z/2 and
HomZ(Z/2,−) and HomZ(−,Z/2) are therefore not exact.

A functor F is right exact if for every short exact sequence 0 → A → B → C → 0, the
sequence F (A) → F (B) → F (C) → 0 is exact. Similarly, a functor F is left exact if whenever
0→ A→ B → C → 0 is exact, then 0→ F (A)→ F (B)→ F (C) is exact.

Lemma 1. The functor HomR(M,−) is left exact.

Lemma 2. The functor −⊗R N is right exact.

Proof. Given a short exact sequence of right R-modules 0 → A
ι→ B

π→ C → 0, we need to show
that A⊗R N → B ⊗R N → C ⊗R N → 0 is exact. The surjectivity of B ⊗R N → C ⊗R N is easy,
so let us focus on the harder argument: given an element

∑
bi ⊗ ni ∈ B ⊗R N that goes to zero in

C ⊗R N , we need to show that it comes from A⊗R N .
Since

∑
π(bi) ⊗ ni = 0 in A ⊗R N , there exist elements c′α, c′′α, nα, cβ , n′β , n′′β , cγ , rγ , nγ such

that ∑
i

π(bi)⊗ ni +
∑
α

(c′α + c′′α)⊗ nα − c′α ⊗ nα − c′′α ⊗ nα

+
∑
β

cβ ⊗ (n′β + n′′β)− cβ ⊗ n′β − cβ ⊗ n′′β

+
∑
γ

cγrγ ⊗ nγ − cγ ⊗ rγnγ

is zero in the free abelian group on the set of symbols “c ⊗ n”. If we mod out that free abelian
group by the first set of relations (c′ + c′′) ⊗ n = c′ ⊗ n + c′′ ⊗ n, then we get the abelian group⊕

n∈N C. So, another way of saying that
∑
π(bi)⊗ ni is zero in A⊗R N is to say that there exist

elements cβ , n′β , n′′β , cγ , rγ , nγ such that∑
i

π(bi)⊗ ni +
∑
β

cβ ⊗ (n′β + n′′β)− cβ ⊗ n′β − cβ ⊗ n′′β +
∑
γ

cγrγ ⊗ nγ − cγ ⊗ rγnγ = 0 in
⊕
n∈N

C,

where “c⊗ n” now stands for the element c put in the n-th copy of C.
Pick preimages bβ , bγ ∈ B of cβ , cγ ∈ C, and consider the element

y :=
∑
i

bi ⊗ ni +
∑
β

bβ ⊗ (n′β + n′′β)− bβ ⊗ n′β − bβ ⊗ n′′β +
∑
γ

bγrγ ⊗ nγ − bγ ⊗ rγnγ ∈
⊕
n∈N

B.

This element goes to 0 in
⊕

n∈N C and therefore comes from some x ∈
⊕

n∈N A.
Let [x] denote the image of x in A ⊗R N and let [y] denote the image of y in B ⊗R N . Since

x 7→ y, it follows that [x] 7→ [y]. We are done since [y] =
∑
i bi ⊗ ni in B ⊗R N .



Exercise 7. Let C be a category and let Z ∈ C be a zero object. Prove that any morphism X → Z
is an epimorphism and that any morphism Z → X is an monomorphism.

Exercise 8. Let X1 and X2 be two objects in an additive category. Let i1 : X1 → Z, i2 : X2 → Z,
p1 : Z → X1, p2 : Z → X2 be morphisms exhibiting Z as the direct sum of X1 and X2. Let
i′1 : X1 → Z ′, i′2 : X2 → Z ′, p′1 : Z ′ → X1, p′2 : Z ′ → X2 be morphisms exhibiting Z ′ as the direct
sum of X1 and X2. Show that there exists a unique isomorphism f : Z → Z ′ satisfying f ◦ i1 = i′1,
f ◦ i2 = i′2, p′1 ◦ f = p1, and p′2 ◦ f = p2.

Exercise 9. Let Xi, i ∈ N be objects in an additive category. Show that lim−→
n

X1⊕. . .⊕Xn '
∞⊕
i=1

Xi.

Show that lim←−
n

X1 ⊕ . . .⊕Xn '
∞∏
i=1

Xi.

Exercise 10. Let R be a ring. Prove that the functor R2⊗R− : {R-modules} → {Abelian groups}
is exact.

Exercise 11. Let C be the category whose objects are triples (A,B, f) where A and B are abelian
groups and f a homomorphism from A to B, and whose morphisms are given by

HomC

(
(A,B, f), (A′, B′, f ′)

)
:= {g : A→ A′, h : B → B′ |hf = f ′g}.

Show that the functor C → {Abelian groups} which sends (A,B, f) to ker(f) is not exact.

Exercise 12. Let C be the category whose objects are free abelian groups and whose morphisms
are group homomorphisms between free abelian groups. Show that C is not an abelian category.

Week 3
The homology of a chain complex of R-modules C• = (Cn, dn : Cn → Cn−1)n∈Z is defined by

Hn(C•) =
ker(dn : Cn → Cn−1)

im(dn+1 : Cn+1 → Cn)

If C• is a chain complex in an arbitrary abelian category, the object Hn(C•) can be defined in purely
categorical terms, as the cokernel of the canonical map Cn+1 → ker(dn : Cn → Cn−1).

Lemma: kernels are monomorphisms; cokernels are epimorphisms.

An R-module is called projective if it is a direct summand of a free module. An object P of an
abelian category is called projective if for every epimorphism A→ B and every morphism P → B,
there exists a morphism P → A such that the triangle commutes:

A

∀
����

P
∀ //

∃
??

B

Let M be a right R-module and N a left R-module. Then:

TorRi (M,N) := Hi(P• ⊗R N)

where P• is a projective resolution of M . Implicit in the above definition is the fact that TorRi (M,N)
doesn’t depend on the choice of projective resolution.

Let M and N be R-modules (either both right modules or both left modules). Then:

ExtiR(M,N) := Hi(HomR(P•, N))

Here, P• is a projective resolution of M . Once again, the choice of resolution doesn’t matter.
If R = Z, then every module admits a resolution of length 1. This implies that TorZi and ExtiZ

vanishes as soon as i > 1. This property is called ‘Z has cohomological dimension one’.



Exercise 13. Let M be an R-module. Prove that the functor HomR(−,M) : (R-Mod)op → AbGp
is left exact.

Exercise 14 (exact functors). Let R and S be rings, let C := R-Mod and D := S-Mod be the
associated abelian categories of modules, and let F : C → D be an additive functor.

Assume that F sends short exact sequences to short exact sequences. Prove that it sends exact
sequences (or any length) to exact sequences.

Exercise 15. Let k be a field, and let C be the abelian category of k-vector spaces. Let D be an
arbitrary abelian category. Prove that every additive functor C → D is exact.

Exercise 16 (projective modules). Let R be a ring. Prove that an R-module P is a direct summand
of a free module iff for every surjective module map p : A → B and every morphism f : P → B,
there exists a factorisation of f through p.

Exercise 17 (this was done in class, but it all went pretty fast; the point of this exercise is to fill
in the details). Let R := Z[

√
−5]. Prove that the ideal generated by 2 and 1 +

√
−5 is a projective

R-module which is not free.

Exercise 18. Let n andm be positive integers. Compute Ext∗Z(Z/nZ,Z/mZ) and TorZ∗(Z/nZ,Z/mZ).

Week 4
A morphism of chain complexes f• : C• → D• induces a corresponding morphism at the level of

cohomology groups Hn(f•) : Hn(C•)→ Hn(D•).

Lemma 3. (snake lemma) A short exact sequence of chain complexes 0 → A• → B• → C• → 0
(which, by definition, means that for each n the sequence 0→ An → Bn → Cn → 0 is exact) induces
a long exact sequence in homology. See p. 117 of Hatcher’s book for a proof.

TorRi (M,N) and ExtiR(M,N) are independent of the choice of resolution. They can be computed
by resolving either M or N .

Let M be a right R-module and N a left R-module. Then:

Hi(P• ⊗R N) ∼= Hi(Tot(P• ⊗R Q•)) ∼= Hi(M ⊗R Q•)

where P• is a projective resolution of M or Q• is a projective resolution of N . The isomorphism
Hi(P•⊗RN) ∼= Hi(Tot(P•⊗RQ•)) is the connecting homomorphism in the LES associated to the
short exact sequence

0→ P• ⊗R N → Tot
(
P• ⊗R Q• → P• ⊗R N

)
→ Tot

(
P• ⊗R Q•

)
→ 0.

The fact that the middle term is acyclic (the words ‘acyclic’ and ‘exact’ are synonyms) follows from
the following lemma:

Lemma 4. Let C•• be a double complex such that for every n there exists only finitely many pairs
(p, q) such that p+ q = n and Cp,q 6= 0. Then we have(

C•• has exact rows
)
⇒
(

Tot(C••) is exact
)

Let now M and N be R-modules (either both right modules or both left modules). Then
ExtiR(M,N) can be computed in any one of the following ways:

Hi(HomR(P•, N)) ∼= Hi(Tot(HomR(P•, I
•))) ∼= Hi(HomR(M, I•)).

Here, P• is a projective resolution of M and I• is an injective resolution of N . Once again, the
choice of resolution doesn’t matter, neither does the choice of which of the two modules one decides
to resolve.



Exercise 19. Let a, b ≤ n. Compute Ext∗C[x]/xn(C[x]/xa,C[x]/xb) and TorC[x]/x
n

∗ (C[x]/xa,C[x]/xb).

Exercise 20. Let a, b divide n. Compute Ext∗Z/nZ(Z/aZ,Z/bZ) and TorZ/nZ∗ (Z/aZ,Z/bZ).

Exercise 21. Compute Ext∗C[x,y]/(x3,xy,y3)(C,C) and TorC[x,y]/(x
3,xy,y3)

∗ (C,C).

Exercise 22. Prove that Z has cohomological dimension one. I.e., prove that every Z-module (not
necessarily finitely generated) admits a projective resolution of length 1.

Exercise 23. Provide an example of a ring R and a module M such that there does not exist a
projective resolution of M of finite length.

Exercise 24. Show that a short exact sequence 0→ A→ B → C → 0 has an associated invariant
in Ext1(C,A).

Week 5
A module P is projective if HomR(P,−) is exact. A module I is injective if HomR(−, I) is exact.

A module F is flat if −⊗R F is exact. Equivalently, P is projective if for every solid arrow diagram
there exists a dotted arrow making the diagram commute:

P

��

∃

��
B // // C

In the same vein, I is injective if for every solid arrow diagram there exists a dotted arrow making
the diagram commute:

I __
∃

==

A // // B

Every projective module is flat. Indeed, if M = M ′ ⊕M ′′, then we have (M is flat) ⇔ (M ′ is flat
and M ′′ is flat). Starting from the obvious fact that free modules are flat, we conclude that every
projective module is flat.

Q is a flat Z-module. That’s because Q = colim(Z ·2−→ Z ·3−→ Z ·4−→ Z ·5−→ . . .) and for every
abelian group A we have

Q⊗Z A = colim(A
·2−→ A

·3−→ A
·4−→ A

·5−→ . . .).

In order to check that Q is flat, one needs to check that an injective map f : A → B remains
injective after applying the functor Q⊗Z −. This is a diagram chase in the diagram:

A

f

��

·2 // A

f

��

·3 // A

f

��

·4 // . . .

B
·2 // B

·3 // B
·4 // . . .

The pullback of a diagram of modules A
f−→ C

g←− B is the set {(a, b) ∈ A⊕B : f(a) = g(b)}. It

is also the limit of the diagram A→ C ← B. The pushout of a diagram of modules A
f←− C g−→ B is

the quotient A⊕B/{(f(c),−g(c)) : c ∈ C}. It is also the colimit of the diagram A← C → B.
A diagram of R-modules indexed by a poset P is just a functor P → R-Mod. Concretely, this is

the data of R-modules Mα indexed by P , and maps fαβ : Mα → Mβ for all α < β ∈ P , satisfying
fβγfαβ = fαγ .



The limit of a a diagram P → R-Mod (where P is a poset) can be described concretely as{
(mα) ∈

∏
α∈P Mα : fαβ(mα) = mβ ,∀α < β ∈ P

}
. The colimit of a a diagram P → R-Mod is

given by
⊕

α∈P Mα

/
Span{m−fαβ(m) : m ∈Mα}. Limits and colimits can alternatively be defined

by means of a universal property.
A poset is called directed if for every x, y ∈ P , there exists z ∈ P such that z ≥ x and z ≥ y.

If P is a directed poset, then every element of colimα∈PMα is represented by some element m of
some Mα. Moreover, if P is a direct poset, then an element m ∈Mα represents the zero element in
colimα∈PMα iff there exists some β ≥ α in P such that m becomes zero in Mβ .

The latter fails miserably for e.g. pushout(Z/2← Z→ Z/3).

Exercise 25. Prove that, in the category of abelian groups, an abelian group A is flat if and only
if it is torsion-free. (The argument is essentially the same as the one which I presented in class to
show that Q is flat.)

Exercise 26. Prove that, in the category of abelian groups, if an abelian group A is injective then
it is divisible (here, divisible means ∀a ∈ A,∀n ∈ N,∃x ∈ A s.t.nx = a).

For the next exercise, you may assume without proof the fact that an abelian group is injective if
and only if it is divisible.

Exercise 27. Compute Ext∗Z(Z/2Z,Z/2Z), Ext∗Z(Z,Z/2Z), and Ext∗Z(Z/2Z,Z) using injective res-
olutions.

Exercise 28. Compute Ext∗Z(Z/2Z,Z/2Z) using the formula H∗(Tot(HomR(P•, I
•))).

Exercise 29. Compute TorC[x]/x
2

∗ (C,C) using the formula H∗(Tot(P• ⊗R Q•)).

Exercise 30. Write an example of a bigraded chain complex C•• which fails the condition “for
every n there exists only finitely many pairs (p, q) such that p + q = n and Cp,q 6= 0”, and which
also fails the condition (

C•• has exact rows
)
⇒
(

Tot(C••) is exact
)
.

In other words, you must find a bigraded chain complex C•• which has has exact rows, but such
that Tot(C••) is not exact.

Week 6
Theorem (Baer’s criterion)

An R-module E is injective if and only if every left ideal I < R and any map I → E, the

extension problem

E

I //

OO

R

__

admits a solution.

See e.g. https://ncatlab.org/nlab/show/Baer’s+criterion for a proof.
Corollary of Baer’s criterion: if R is a PID, then a module M is injective iff it is divisible, i.e. iff

for every x ∈M and every non-zero r ∈ R there exists y ∈M such that ry = x.
An abelian category is said to have enough projectives if for every object X, there exists a

projective object P and an epimorphism P → X. Dually, an abelian category is said to have
enough injectives if for every object X, there exists an injective object I and a monomorphism
X → I.

It is easy to see that for any ring R, the category of R-modules has enough projectives: take P
to be free R module on the underlying set of X (any generating set would also do).

Showing the R-mod has enough injectives is much harder. Given an R-module M , let S denote
the set of all pairs (I, f), where I is an ideal of R, and f : I →M is an R-module homomorphism.



We write M ′ for the following pushout:

M // M ′

⊕
(I,f)∈S

I //

⊕
f

OO

⊕
(I,f)∈S

R

OO

Write M0 := M and Mn+1 := (Mn)′. If every ideal is finitely generated, then M∞ := colim(M0 →
M1 → M2 → . . .) is an injective module. It obviousely contains M as a submodule. To show that
M∞ is injective, we use Baer’s criterion. Using the fact that every ideal is finitely generated, every
map f : I → M∞ factors through some finite stage of the colimit, let’s say f : I → Mn. The

extension problem will then admit a solution at the next stage:

Mn+1

I //

f

OO

R

∃
bb

. Here, the map

R → Mn+1 comes from

Mn
// Mn+1

⊕
(I,f)

I //

⊕
f

OO

⊕
(I,f)

R

OO

I //

OO

R

OO

, where the bottom vertical maps I →
⊕

(I,f) I and

R→
⊕

(I,f)R are the inclusions of the summands indexed by (I, f).
For general rings, i.e. without the condition that every ideal is finitely generated, then a similar

construction can be made to work, provided one replaces colimn∈NMn by a colimit indexed over all
ordinals which are small than a suitably chosen cardinal. Let λ be the smallest cardinal which is
bigger than the cardinality of R. For every ordinal α with |α| < λ, define inductively M0 := M ,
Mα := (Mβ)′ if α = β + 1, and Mα := colimβ<αMβ if α is a limit ordinal. Then colim|α|<λMα is
an injective that contains M as a submodule.

Week 7
Let A and B be abelian categories. Assume that A has enough projectives. Let F : A → B

be a right exact functor. The nth left derived functor of F , denoted LnF : A → B is defined by
X → Hn(F (P•)), where P• → X is a projective resolution. Let us now assume that A admits
functorial projective resolutions. The total left derived functor of F , denoted LF : A → Ch(B) is
defined by X → F (P•). Here, Ch(B) denotes the category of chain complexes in B.

Assume now that A has enough injectives and that F : A→ B is a left exact functor. The nth
right derived functor of F , denoted RnF : A→ B is defined by X → Hn(F (I•)), where X → I• is
an injective resolution. Let us now assume that A admits functorial injective resolutions. The total
right derived functor of F , denoted RF : A→ Ch(B) is defined by X → F (I•).

Two chain maps f•, g• : C• → D• are chain homotopic if there exists a degree −1 map h : C• →
D• satisfying hd+dh = f−g. The notion of chain homotopy is made so that whenever f• : C• → D•
and g• : C• → D• are chain homotopic maps, then H∗(f•) = H∗(g•) : H∗(C•)→ H∗(D•).

If I• denotes the “interval” chain complex I• = (Z2

(
1
−1
)

←−−−− Z), then a chain homotopy between
two maps C• → D• is the same thing as a map tot(C• ⊗ I•) → D•. This is reminiscent to the
situation in topology, where a homotopy between two continuous maps X → Y is defined to be a
map X × [0, 1]→ Y .



Exercise 31. Prove that
{

(mα) ∈
∏
α∈P Mα : fαβ(mα) = mβ ,∀α < β ∈ P

}
satisfies the universal

property of a limit, and that
⊕

α∈P Mα

/
Span{m − fαβ(m) : m ∈ Mα} satisfies the universal

property of a colimit.

Exercise 32. Consider the following two proofs (you may take P = N if you want):

Lemma A: Let {Mα}α∈P be a diagram of R-
modules indexed by some directed poset P . Then
we have a canonical isomorphism

Torn(colimMα, N) = colim Torn(Mα, N).

Proof. Let Fα• be the canonical free resolution of
Mα. Then F• := colimα∈PF

α
• is the canonical

free resolution of M := colimα∈PMα. We then
have

colimα∈P TorRn (Mα, N)

= colimα∈P Hn(Fα• ⊗R N)

=Hn(colimα∈P (Fα• ⊗R N))

=Hn((colimα∈P F
α
• )⊗R N)

=Hn(F• ⊗R N) = TorRn (M,N).

Lemma B: Let {Mα}α∈P be a diagram of R-
modules indexed by (the opposite of) a directed
poset. Then we have a canonical isomorphism

Extn(colimMα, N) = lim Extn(Mα, N).

Proof. Let Fα• be the canonical free resolution of
Mα. Then F• := colimα∈PF

α
• is the canonical

free resolution of M := colimα∈PMα. We then
have

limα∈P ExtRn (Mα, N)

= limα∈P H
n(HomR(Fα• , N))

=Hn(limα∈P (HomR(Fα• , N)))

=Hn(HomR(colimα∈PF
α
• , N))

=Hn(HomR(F•, N)) = ExtnR(M,N)

Lemma A is correct and its proof is correct, but Lemma B is wrong and its proof is flawed. Find the
error in the proof of Lemma B, and illustrate the mistake by providing a counterexample. Explain
(by filling the details of the proof) why the corresponding step in the proof of Lemma A is ok.

Exercise 33. Prove that a Z-module is injective iff it is a (possibly infinite) direct sum of modules
of the form Q and Z[ 1p ]/Z.

Exercise 34. Let K be an algebraically closed field. Prove that a K[x]-module is injective iff it is
a (possibly infinite) direct sum of modules of the form K[x] and K[y, y−1]/K[y] for y = x− a and
a ∈ K.

Exercise 35. Let P be a directed poset. Prove that the category whose objects are functors
P → AbGp and whose morphisms are natural transformations between such functors has enough
projectives.

Exercise 36. Prove that the relation of chain homotopy is an equivalence relation.

Week 8
The total (co)chain complex of a bigraded (co)chain complex comes in two flavours: tot∏ and tot⊕.

If A← P• andB ← Q• are projective resolutions, then the cochain complex tot∏(Hom(P•, Q•)
)

computes Ext(A,B).
Using this fact, the composition of homomorphisms Hom(A,B) ⊗ Hom(B,C) → Hom(A,C)

induces a well-defined map Exti(A,B)⊗ Extj(B,C)→ Exti+j(A,C). In particular,

Ext∗(A,A) :=

∞⊕
i=0

Exti(A,A)

is a ring.
Writing Hom(C•, D•) := tot∏(Hom(C•, D•)

)
, we have a canonical isomorhpism

Hn
(

Hom(C•, D•)
)

=
degree (−n) chain maps C• → D•

maps which are chain-homotopic to zero



We performed the following Ext-ring computations in class:
• Extk[x](k, k) = k[y]/y2, with y in degree 1.
• Extk[x]/(x2)(k, k) = k[y], with y in degree 1.
• Extk[x]/(x3)(k, k) = k[y, z]/(y2), with y in degree 1 and z in degree 2.
• Extk[x,y](k, k) = k〈y, z〉/y2, z2, yz = −zy, with both y and z in degree 1.

Exercise 37. Compute the Ext-ring ExtZ(Z/2,Z/2).

Exercise 38. Compute the Ext-ring ExtZ/4(Z/2,Z/2).

Exercise 39. Compute the Ext-ring ExtZ/8(Z/2,Z/2).

Exercise 40. Compute the Ext-ring ExtZ[x](Z/2,Z/2).

Exercise 41. Compute the Ext-ring ExtZ[x](Z/3,Z/3).

Exercise 42. Compute the Ext-ring ExtZ[x]/(x2)(Z/2,Z/2).


