Homological algebra (Oxford, fall 2016)

André Henriques

Revision session on Thu. Jan. 19th, 3:00–4:30pm, in rooms C1 (3:00–3:30pm) and C4 (3:30–4:30pm).

Week 1

I recalled the notions of ring, modules, and the fact that \mathbb{Z} -modules are the same thing as abelian groups. The direct sum of *R*-modules M_i is defined by

$$\bigoplus_{i\in\mathcal{I}}M_i:=\Big\{f:\mathcal{I}\to\bigcup_{i\in\mathcal{I}}M_i\,\Big|\,f(i)\in M_i\text{ and }\#\{i\in\mathcal{I}:f(i)=0_{M_i}\}<\infty\Big\}.$$

The product of modules M_i is given by

$$\prod_{i \in \mathcal{I}} M_i := \Big\{ f : \mathcal{I} \to \bigcup_{i \in \mathcal{I}} M_i \, \Big| \, f(i) \in M_i \Big\}.$$

The *R*-module structure is given by $(f + g)(i) = f(i) + M_i g(i)$ and $(r \cdot f)(i) = r \cdot M_i (f(i))$.

An inclusion of of *R*-modules $N \subset M$ is called *split* if there exists another submodule $N' \subset M$ such every element of *M* can be uniquely written as a sum of an element of *N* and an element of *N'*. *Example:* the inclusion $\mathbb{Z}/2 \hookrightarrow \mathbb{Z}/4$ is not split, but the inclusion $\mathbb{Z}/2 \hookrightarrow \mathbb{Z}/6$ is split.

Given a ring R, the tensor product over R of a right module M with a left module N is denoted $M \otimes_R N$. It is the abelian group generated by symbols $m_1 \otimes n_1 + \ldots + m_k \otimes n_k$, under the equivalence relation generated by

$$(m+m') \otimes n = m \otimes n + m' \otimes n,$$

$$m \otimes (n+n') = m \otimes n + m \otimes n',$$

and

$$mr \otimes n = m \otimes rn.$$

A chain complex of *R*-modules $C_{\bullet} = (C_n, d_n)_{n \in \mathbb{Z}}$ is a collection of *R*-modules C_n and *R*-module maps $d_n : C_n \to C_{n-1}$, called 'differentials', subject to the axiom $d_n \circ d_{n+1} = 0$. This axiom is sometimes abusively abbreviated $d^2 = 0$. A chain complex is called *exact* if ker $(d_n) = \operatorname{im}(d_{n+1})$.

A functor is called *exact* if it sends exact sequences to exact sequences.

Exercise 1. Let $R := \mathbb{R}[x]/x^2$. Prove that the obvious inclusion of *R*-modules $R/x \hookrightarrow R$ is not split.

Exercise 2. Let $R := M_2(\mathbb{Z})$ be the ring of two-by-two matrices with integer coefficients. Show that the *R*-module *R* can be written as a direct sum of two smaller *R*-modules.

Exercise 3. Show that if p and q are distinct prime numbers, then $\mathbb{Z}/p \otimes_{\mathbb{Z}} \mathbb{Z}/q = 0$.

Exercise 4. Prove that for any abelian group A, there is a canonical isomorphism $A \otimes_{\mathbb{Z}} \mathbb{Z}/2 \cong A/2A$.

Exercise 5. Let $R := \mathbb{Z}[x]$. Compute $Hom_R(R/2x, R/4)$ as an *R*-module. Show that it is isomorphic to R/I for some ideal $I \subset R$.

Exercise 6. Provide an example of a ring R and two modules M and N such that the abelian group $Hom_R(M, N)$ does not carry the structure of an R-module.

<u>Week 2</u> A zero object is an object that admits exactly one morphism to it from any other object and exactly one morphism from it to any other object.

A monomorphism is a morphism f that satisfies $(f \circ g_1 = f \circ g_2) \Rightarrow (g_1 = g_2)$. Equivalently, it is a morphism $f: X \to Y$ with the property that whenever two morphisms $g_1, g_2: Z \to X$ are distinct, they remain distinct after composing them with f. Dually, an *epimorphism* is a map fthat satisfies $(g_1 \circ f = g_2 \circ f) \Rightarrow (g_1 = g_2).$

The direct sum of two objects X_1 and X_2 is an object Z equipped with maps $i_1 : X_1 \to Z$, $i_2: X_2 \to Z, p_1: Z \to X_1, p_2: Z \to X_2$ satisfying $p_1 \circ i_1 = id, p_2 \circ i_2 = id, p_1 \circ i_2 = 0, p_2 \circ i_1 = 0, p_2 \circ i_1 = 0, p_2 \circ i_2 = id, p_2 \circ i_2 = id, p_2 \circ i_2 = id, p_2 \circ i_1 = 0, p_2 \circ i_2 = id, p_2 \circ i_2 \circ i_2 = id, p_2 \circ i_2 = id, p_2$ and $i_1 \circ p_1 + i_2 \circ p_2 = id$.

An pre-additive category is a category such that all the hom-sets are equipped with the structure of abelian groups and such that composition $\operatorname{Hom}(x,y) \times \operatorname{Hom}(y,z) \to \operatorname{Hom}(x,z)$ is bilinear. An additive category is a category which is preadditive, admits a zero object, and admits all direct sums.

The kernel of a map $f: X \to Y$ is a morphism $i: K \to X$ which is universal w.r.t the property that $f \circ i = 0$. This means the following: it's an object K along with a morphism $i: K \to X$ satisfying $f \circ i = 0$, such that for every object \tilde{K} and every morphism $\tilde{i} : \tilde{K} \to X$ satisfying $f \circ \tilde{i} = 0$, there exists a unique morphism $g: \tilde{K} \to K$ such that $\tilde{i} = i \circ g$.

Dually, the cokernel of a map $f: X \to Y$ is a morphism $q: Y \to C$ which is universal w.r.t the property that $q \circ f = 0$.

A colimit (also called *direct limit*) of a sequence of morphisms $X_1 \to X_2 \to X_3 \to \ldots$ is an object Z along with morphisms $X_i \to Z$ such that

and such that for every other diagram

there exists a unique morphism $Z \to \tilde{Z}$ such that all the triangles in this big diagram commute:

The colimit can be denoted colim X_i or $\lim X_i$. Quite often 'colimit' means the same thing as 'union'. The dual notion is called a *limit*. It is denoted $\lim X_i$ or $\lim X_i$.

An additive category is called *abelian* if every monomorphism is the kernel of its cokernel and every epimorphism is the cokernel of its kernel. By this, we mean that for every monomorphism $f: x \to y$, the canonical morphism from x to $\ker(y \to \operatorname{coker}(f))$ is an isomorphism (and similarly for the second condition, which concerns epimorphisms).

An additive functor between abelian categories is called *exact* if it sends exact sequences to exact sequences, equivalently, if it sends short exact sequences to short exact sequences. Note that the functor $-\otimes_{\mathbb{Z}} \mathbb{Z}/2$ is not exact: it sends the exact sequence

$$0 \to \mathbb{Z} \xrightarrow{\cdot 2} \mathbb{Z} \twoheadrightarrow \mathbb{Z}/2 \to 0$$

to the sequence $0 \to \mathbb{Z}/2 \xrightarrow{0} \mathbb{Z}/2 \xrightarrow{\simeq} \mathbb{Z}/2 \to 0$ which is not exact. Similarly, the functor $\operatorname{Hom}_{\mathbb{Z}}(\mathbb{Z}/2, -)$ sends the exact sequence

$$0 \to \mathbb{Z} \xrightarrow{\cdot 2} \mathbb{Z} \twoheadrightarrow \mathbb{Z}/2 \to 0$$

to the sequence $0 \to 0 \to \mathbb{Z}/2 \to 0$ which is not exact. Finally, the contravariant functor $\operatorname{Hom}_{\mathbb{Z}}(-,\mathbb{Z}/2)$ sends the exact sequence

$$0 \to \mathbb{Z} \xrightarrow{\cdot 2} \mathbb{Z} \twoheadrightarrow \mathbb{Z}/2 \to 0$$

to the sequence $0 \leftarrow \mathbb{Z}/2 \xleftarrow{0} \mathbb{Z}/2 \xleftarrow{\simeq} \mathbb{Z}/2 \leftarrow 0$ which is not exact. The functors $- \otimes_{\mathbb{Z}} \mathbb{Z}/2$ and $\operatorname{Hom}_{\mathbb{Z}}(\mathbb{Z}/2, -)$ and $\operatorname{Hom}_{\mathbb{Z}}(-, \mathbb{Z}/2)$ are therefore not exact.

A functor F is *right exact* if for every short exact sequence $0 \to A \to B \to C \to 0$, the sequence $F(A) \to F(B) \to F(C) \to 0$ is exact. Similarly, a functor F is *left exact* if whenever $0 \to A \to B \to C \to 0$ is exact, then $0 \to F(A) \to F(B) \to F(C)$ is exact.

Lemma 1. The functor $\operatorname{Hom}_R(M, -)$ is left exact.

Lemma 2. The functor $-\otimes_R N$ is right exact.

Proof. Given a short exact sequence of right *R*-modules $0 \to A \stackrel{\iota}{\to} B \stackrel{\pi}{\to} C \to 0$, we need to show that $A \otimes_R N \to B \otimes_R N \to C \otimes_R N \to 0$ is exact. The surjectivity of $B \otimes_R N \to C \otimes_R N$ is easy, so let us focus on the harder argument: given an element $\sum b_i \otimes n_i \in B \otimes_R N$ that goes to zero in $C \otimes_R N$, we need to show that it comes from $A \otimes_R N$.

Since $\sum \pi(b_i) \otimes n_i = 0$ in $A \otimes_R N$, there exist elements $c'_{\alpha}, c''_{\alpha}, n_{\alpha}, c_{\beta}, n'_{\beta}, n''_{\beta}, c_{\gamma}, r_{\gamma}, n_{\gamma}$ such that

$$\sum_{i} \pi(b_{i}) \otimes n_{i} + \sum_{\alpha} (c'_{\alpha} + c''_{\alpha}) \otimes n_{\alpha} - c'_{\alpha} \otimes n_{\alpha} - c''_{\alpha} \otimes n_{\alpha} + \sum_{\beta} c_{\beta} \otimes (n'_{\beta} + n''_{\beta}) - c_{\beta} \otimes n'_{\beta} - c_{\beta} \otimes n''_{\beta} + \sum_{\gamma} c_{\gamma} r_{\gamma} \otimes n_{\gamma} - c_{\gamma} \otimes r_{\gamma} n_{\gamma}$$

is zero in the free abelian group on the set of symbols " $c \otimes n$ ". If we mod out that free abelian group by the first set of relations $(c' + c'') \otimes n = c' \otimes n + c'' \otimes n$, then we get the abelian group $\bigoplus_{n \in N} C$. So, another way of saying that $\sum \pi(b_i) \otimes n_i$ is zero in $A \otimes_R N$ is to say that there exist elements c_β , n'_β , n''_β , c_γ , r_γ , n_γ such that

$$\sum_{i} \pi(b_{i}) \otimes n_{i} + \sum_{\beta} c_{\beta} \otimes (n_{\beta}' + n_{\beta}'') - c_{\beta} \otimes n_{\beta}' - c_{\beta} \otimes n_{\beta}'' + \sum_{\gamma} c_{\gamma} r_{\gamma} \otimes n_{\gamma} - c_{\gamma} \otimes r_{\gamma} n_{\gamma} = 0 \text{ in } \bigoplus_{n \in N} C,$$

where " $c \otimes n$ " now stands for the element c put in the n-th copy of C.

Pick preimages $b_{\beta}, b_{\gamma} \in B$ of $c_{\beta}, c_{\gamma} \in C$, and consider the element

$$y := \sum_{i} b_i \otimes n_i + \sum_{\beta} b_{\beta} \otimes (n'_{\beta} + n''_{\beta}) - b_{\beta} \otimes n'_{\beta} - b_{\beta} \otimes n''_{\beta} + \sum_{\gamma} b_{\gamma} r_{\gamma} \otimes n_{\gamma} - b_{\gamma} \otimes r_{\gamma} n_{\gamma} \in \bigoplus_{n \in N} B.$$

This element goes to 0 in $\bigoplus_{n \in N} C$ and therefore comes from some $x \in \bigoplus_{n \in N} A$.

Let [x] denote the image of x in $A \otimes_R N$ and let [y] denote the image of y in $B \otimes_R N$. Since $x \mapsto y$, it follows that $[x] \mapsto [y]$. We are done since $[y] = \sum_i b_i \otimes n_i$ in $B \otimes_R N$.

Exercise 7. Let C be a category and let $Z \in C$ be a zero object. Prove that any morphism $X \to Z$ is an epimorphism and that any morphism $Z \to X$ is an monomorphism.

Exercise 8. Let X_1 and X_2 be two objects in an additive category. Let $i_1 : X_1 \to Z$, $i_2 : X_2 \to Z$, $p_1 : Z \to X_1$, $p_2 : Z \to X_2$ be morphisms exhibiting Z as the direct sum of X_1 and X_2 . Let $i'_1 : X_1 \to Z'$, $i'_2 : X_2 \to Z'$, $p'_1 : Z' \to X_1$, $p'_2 : Z' \to X_2$ be morphisms exhibiting Z' as the direct sum of X_1 and X_2 . Show that there exists a unique isomorphism $f : Z \to Z'$ satisfying $f \circ i_1 = i'_1$, $f \circ i_2 = i'_2$, $p'_1 \circ f = p_1$, and $p'_2 \circ f = p_2$.

Exercise 9. Let $X_i, i \in \mathbb{N}$ be objects in an additive category. Show that $\varinjlim_n X_1 \oplus \ldots \oplus X_n \simeq \bigoplus_{i=1}^{\infty} X_i$. Show that $\varprojlim_n X_1 \oplus \ldots \oplus X_n \simeq \prod_{i=1}^{\infty} X_i$.

Exercise 10. Let R be a ring. Prove that the functor $R^2 \otimes_R - : \{R\text{-modules}\} \to \{\text{Abelian groups}\}$ is exact.

Exercise 11. Let C be the category whose objects are triples (A, B, f) where A and B are abelian groups and f a homomorphism from A to B, and whose morphisms are given by

$$Hom_C((A, B, f), (A', B', f')) := \{g : A \to A', h : B \to B' | hf = f'g\}.$$

Show that the functor $C \to \{\text{Abelian groups}\}$ which sends (A, B, f) to ker(f) is not exact.

Exercise 12. Let C be the category whose objects are free abelian groups and whose morphisms are group homomorphisms between free abelian groups. Show that C is not an abelian category.

Week 3

The homology of a chain complex of R-modules $C_{\bullet} = (C_n, d_n : C_n \to C_{n-1})_{n \in \mathbb{Z}}$ is defined by

$$H_n(C_{\bullet}) = \frac{\ker(d_n : C_n \to C_{n-1})}{\operatorname{im}(d_{n+1} : C_{n+1} \to C_n)}$$

If C_{\bullet} is a chain complex in an arbitrary abelian category, the object $H_n(C_{\bullet})$ can be defined in purely categorical terms, as the cokernel of the canonical map $C_{n+1} \to \ker(d_n : C_n \to C_{n-1})$.

Lemma: kernels are monomorphisms; cokernels are epimorphisms.

An *R*-module is called *projective* if it is a direct summand of a free module. An object *P* of an abelian category is called *projective* if for every epimorphism $A \to B$ and every morphism $P \to B$, there exists a morphism $P \to A$ such that the triangle commutes:

Let M be a right R-module and N a left R-module. Then:

$$\operatorname{Tor}_{i}^{R}(M, N) := H_{i}(P_{\bullet} \otimes_{R} N)$$

where P_{\bullet} is a projective resolution of M. Implicit in the above definition is the fact that $\operatorname{Tor}_{i}^{R}(M, N)$ doesn't depend on the choice of projective resolution.

Let M and N be R-modules (either both right modules or both left modules). Then:

$$\operatorname{Ext}_{R}^{i}(M,N) := H^{i}(\operatorname{Hom}_{R}(P_{\bullet},N))$$

Here, P_{\bullet} is a projective resolution of M. Once again, the choice of resolution doesn't matter.

If $R = \mathbb{Z}$, then every module admits a resolution of length 1. This implies that $\operatorname{Tor}_{i}^{\mathbb{Z}}$ and $\operatorname{Ext}_{\mathbb{Z}}^{i}$ vanishes as soon as i > 1. This property is called ' \mathbb{Z} has cohomological dimension one'.

Exercise 13. Let M be an R-module. Prove that the functor $\operatorname{Hom}_R(-, M) : (R-\operatorname{Mod})^{op} \to \operatorname{AbGp}$ is left exact.

Exercise 14 (exact functors). Let R and S be rings, let C := R-Mod and D := S-Mod be the associated abelian categories of modules, and let $F : C \to D$ be an additive functor.

Assume that F sends short exact sequences to short exact sequences. Prove that it sends exact sequences (or any length) to exact sequences.

Exercise 15. Let k be a field, and let C be the abelian category of k-vector spaces. Let D be an arbitrary abelian category. Prove that every additive functor $C \to D$ is exact.

Exercise 16 (projective modules). Let R be a ring. Prove that an R-module P is a direct summand of a free module iff for every surjective module map $p: A \to B$ and every morphism $f: P \to B$, there exists a factorisation of f through p.

Exercise 17 (this was done in class, but it all went pretty fast; the point of this exercise is to fill in the details). Let $R := \mathbb{Z}[\sqrt{-5}]$. Prove that the ideal generated by 2 and $1 + \sqrt{-5}$ is a projective R-module which is not free.

Exercise 18. Let *n* and *m* be positive integers. Compute $\operatorname{Ext}_{\mathbb{Z}}^{\mathbb{Z}}(\mathbb{Z}/n\mathbb{Z}, \mathbb{Z}/m\mathbb{Z})$ and $\operatorname{Tor}_{\mathbb{Z}}^{\mathbb{Z}}(\mathbb{Z}/n\mathbb{Z}, \mathbb{Z}/m\mathbb{Z})$.

$\underline{\text{Week } 4}$

A morphism of chain complexes $f_{\bullet}: C_{\bullet} \to D_{\bullet}$ induces a corresponding morphism at the level of cohomology groups $H_n(f_{\bullet}): H_n(C_{\bullet}) \to H_n(D_{\bullet})$.

Lemma 3. (snake lemma) A short exact sequence of chain complexes $0 \to A_{\bullet} \to B_{\bullet} \to C_{\bullet} \to 0$ (which, by definition, means that for each n the sequence $0 \to A_n \to B_n \to C_n \to 0$ is exact) induces a long exact sequence in homology. See p. 117 of Hatcher's book for a proof.

 $\operatorname{Tor}_{i}^{R}(M, N)$ and $\operatorname{Ext}_{R}^{i}(M, N)$ are independent of the choice of resolution. They can be computed by resolving either M or N.

Let M be a right R-module and N a left R-module. Then:

$$H_i(P_{\bullet} \otimes_R N) \cong H_i(\operatorname{Tot}(P_{\bullet} \otimes_R Q_{\bullet})) \cong H_i(M \otimes_R Q_{\bullet})$$

where P_{\bullet} is a projective resolution of M or Q_{\bullet} is a projective resolution of N. The isomorphism $H_i(P_{\bullet} \otimes_R N) \cong H_i(\operatorname{Tot}(P_{\bullet} \otimes_R Q_{\bullet}))$ is the connecting homomorphism in the LES associated to the short exact sequence

$$0 \to P_{\bullet} \otimes_{R} N \to \operatorname{Tot}(P_{\bullet} \otimes_{R} Q_{\bullet} \to P_{\bullet} \otimes_{R} N) \to \operatorname{Tot}(P_{\bullet} \otimes_{R} Q_{\bullet}) \to 0.$$

The fact that the middle term is acyclic (the words 'acyclic' and 'exact' are synonyms) follows from the following lemma:

Lemma 4. Let $C_{\bullet\bullet}$ be a double complex such that for every n there exists only finitely many pairs (p,q) such that p+q=n and $C_{p,q}\neq 0$. Then we have

$$(C_{\bullet\bullet} \text{ has exact rows}) \Rightarrow (\operatorname{Tot}(C_{\bullet\bullet}) \text{ is exact})$$

Let now M and N be R-modules (either both right modules or both left modules). Then $\operatorname{Ext}_{R}^{i}(M, N)$ can be computed in any one of the following ways:

$$H^{i}(\operatorname{Hom}_{R}(P_{\bullet}, N)) \cong H^{i}(\operatorname{Tot}(\operatorname{Hom}_{R}(P_{\bullet}, I^{\bullet}))) \cong H^{i}(\operatorname{Hom}_{R}(M, I^{\bullet})).$$

Here, P_{\bullet} is a projective resolution of M and I^{\bullet} is an injective resolution of N. Once again, the choice of resolution doesn't matter, neither does the choice of which of the two modules one decides to resolve.

Exercise 19. Let $a, b \leq n$. Compute $\operatorname{Ext}_{\mathbb{C}[x]/x^n}^*(\mathbb{C}[x]/x^a, \mathbb{C}[x]/x^b)$ and $\operatorname{Tor}_*^{\mathbb{C}[x]/x^n}(\mathbb{C}[x]/x^a, \mathbb{C}[x]/x^b)$.

Exercise 20. Let a, b divide n. Compute $\operatorname{Ext}_{\mathbb{Z}/n\mathbb{Z}}^*(\mathbb{Z}/a\mathbb{Z}, \mathbb{Z}/b\mathbb{Z})$ and $\operatorname{Tor}_*^{\mathbb{Z}/n\mathbb{Z}}(\mathbb{Z}/a\mathbb{Z}, \mathbb{Z}/b\mathbb{Z})$.

Exercise 21. Compute $\operatorname{Ext}^*_{\mathbb{C}[x,y]/(x^3,xy,y^3)}(\mathbb{C},\mathbb{C})$ and $\operatorname{Tor}^{\mathbb{C}[x,y]/(x^3,xy,y^3)}_*(\mathbb{C},\mathbb{C})$.

Exercise 22. Prove that \mathbb{Z} has cohomological dimension one. I.e., prove that every \mathbb{Z} -module (not necessarily finitely generated) admits a projective resolution of length 1.

Exercise 23. Provide an example of a ring R and a module M such that there does not exist a projective resolution of M of finite length.

Exercise 24. Show that a short exact sequence $0 \to A \to B \to C \to 0$ has an associated invariant in $\text{Ext}^1(C, A)$.

Week 5

A module P is projective if $\operatorname{Hom}_R(P, -)$ is exact. A module I is injective if $\operatorname{Hom}_R(-, I)$ is exact. A module F is flat if $-\otimes_R F$ is exact. Equivalently, P is projective if for every solid arrow diagram there exists a dotted arrow making the diagram commute:

In the same vein, I is injective if for every solid arrow diagram there exists a dotted arrow making the diagram commute:

Every projective module is flat. Indeed, if $M = M' \oplus M''$, then we have $(M \text{ is flat}) \Leftrightarrow (M' \text{ is flat})$ and M'' is flat). Starting from the obvious fact that free modules are flat, we conclude that every projective module is flat.

 \mathbb{Q} is a flat \mathbb{Z} -module. That's because $\mathbb{Q} = \operatorname{colim}(\mathbb{Z} \xrightarrow{\cdot 2} \mathbb{Z} \xrightarrow{\cdot 3} \mathbb{Z} \xrightarrow{\cdot 4} \mathbb{Z} \xrightarrow{\cdot 5} \ldots)$ and for every abelian group A we have

$$\mathbb{Q} \otimes_{\mathbb{Z}} A = \operatorname{colim}(A \xrightarrow{\cdot 2} A \xrightarrow{\cdot 3} A \xrightarrow{\cdot 4} A \xrightarrow{\cdot 5} \ldots).$$

In order to check that \mathbb{Q} is flat, one needs to check that an injective map $f : A \to B$ remains injective after applying the functor $\mathbb{Q} \otimes_{\mathbb{Z}} -$. This is a diagram chase in the diagram:

$$A \xrightarrow{\cdot 2} A \xrightarrow{\cdot 3} A \xrightarrow{\cdot 4} \dots$$
$$\begin{vmatrix} f & & \\ f & & \\ g \xrightarrow{\cdot 2} B \xrightarrow{\cdot 3} B \xrightarrow{\cdot 4} \dots \end{vmatrix}$$

The *pullback* of a diagram of modules $A \xrightarrow{f} C \xleftarrow{g} B$ is the set $\{(a, b) \in A \oplus B : f(a) = g(b)\}$. It is also the limit of the diagram $A \to C \leftarrow B$. The *pushout* of a diagram of modules $A \xleftarrow{f} C \xrightarrow{g} B$ is the quotient $A \oplus B/\{(f(c), -g(c)) : c \in C\}$. It is also the colimit of the diagram $A \leftarrow C \to B$.

A diagram of R-modules indexed by a poset P is just a functor $P \to R$ -Mod. Concretely, this is the data of R-modules M_{α} indexed by P, and maps $f_{\alpha\beta} : M_{\alpha} \to M_{\beta}$ for all $\alpha < \beta \in P$, satisfying $f_{\beta\gamma}f_{\alpha\beta} = f_{\alpha\gamma}$.

The *limit* of a a diagram $P \to R$ -Mod (where P is a poset) can be described concretely as $\{(m_{\alpha}) \in \prod_{\alpha \in P} M_{\alpha} : f_{\alpha\beta}(m_{\alpha}) = m_{\beta}, \forall \alpha < \beta \in P\}$. The *colimit* of a diagram $P \to R$ -Mod is given by $\bigoplus_{\alpha \in P} M_{\alpha} / \text{Span}\{m - f_{\alpha\beta}(m) : m \in M_{\alpha}\}$. Limits and colimits can alternatively be defined by means of a universal property.

A poset is called *directed* if for every $x, y \in P$, there exists $z \in P$ such that $z \ge x$ and $z \ge y$. If P is a directed poset, then every element of $\operatorname{colim}_{\alpha \in P} M_{\alpha}$ is represented by some element m of some M_{α} . Moreover, if P is a direct poset, then an element $m \in M_{\alpha}$ represents the zero element in $\operatorname{colim}_{\alpha \in P} M_{\alpha}$ iff there exists some $\beta \geq \alpha$ in P such that m becomes zero in M_{β} .

The latter fails miserably for e.g. pushout $(\mathbb{Z}/2 \leftarrow \mathbb{Z} \rightarrow \mathbb{Z}/3)$.

Exercise 25. Prove that, in the category of abelian groups, an abelian group A is *flat* if and only if it is *torsion-free*. (The argument is essentially the same as the one which I presented in class to show that \mathbb{Q} is flat.)

Exercise 26. Prove that, in the category of abelian groups, if an abelian group A is *injective* then it is *divisible* (here, divisible means $\forall a \in A, \forall n \in \mathbb{N}, \exists x \in A \text{ s.t. } nx = a$).

For the next exercise, you may assume without proof the fact that an abelian group is injective if and only if it is divisible.

Exercise 27. Compute $\operatorname{Ext}_{\mathbb{Z}}^{\mathbb{Z}}(\mathbb{Z}/2\mathbb{Z}, \mathbb{Z}/2\mathbb{Z})$, $\operatorname{Ext}_{\mathbb{Z}}^{\mathbb{Z}}(\mathbb{Z}, \mathbb{Z}/2\mathbb{Z})$, and $\operatorname{Ext}_{\mathbb{Z}}^{\mathbb{Z}}(\mathbb{Z}/2\mathbb{Z}, \mathbb{Z})$ using injective resolutions.

Exercise 28. Compute $\operatorname{Ext}_{\mathbb{Z}}^{\mathbb{Z}}(\mathbb{Z}/2\mathbb{Z},\mathbb{Z}/2\mathbb{Z})$ using the formula $H^{*}(\operatorname{Tot}(\operatorname{Hom}_{R}(P_{\bullet},I^{\bullet})))$.

Exercise 29. Compute $\operatorname{Tor}^{\mathbb{C}[x]/x^2}_*(\mathbb{C},\mathbb{C})$ using the formula $H_*(\operatorname{Tot}(P_{\bullet}\otimes_R Q_{\bullet}))$.

Exercise 30. Write an example of a bigraded chain complex $C_{\bullet\bullet}$ which fails the condition "for every n there exists only finitely many pairs (p,q) such that p+q = n and $C_{p,q} \neq 0$ ", and which also fails the condition

$$(C_{\bullet\bullet} \text{ has exact rows}) \Rightarrow (\operatorname{Tot}(C_{\bullet\bullet}) \text{ is exact}).$$

In other words, you must find a bigraded chain complex $C_{\bullet\bullet}$ which has has exact rows, but such that $\operatorname{Tot}(C_{\bullet\bullet})$ is not exact.

Week 6

Theorem (Baer's criterion)

An *R*-module E is injective if and only if every left ideal I < R and any map $I \to E$, the extension problem \bigwedge^{I_2} admits a solution. $I \longrightarrow R$

See e.g. https://ncatlab.org/nlab/show/Baer's+criterion for a proof.

Corollary of Baer's criterion: if R is a PID, then a module M is injective iff it is *divisible*, i.e. iff for every $x \in M$ and every non-zero $r \in R$ there exists $y \in M$ such that ry = x.

An abelian category is said to have enough projectives if for every object X, there exists a projective object P and an epimorphism $P \to X$. Dually, an abelian category is said to have enough injectives if for every object X, there exists an injective object I and a monomorphism $X \to I$.

It is easy to see that for any ring R, the category of R-modules has enough projectives: take P to be free R module on the underlying set of X (any generating set would also do).

Showing the *R*-mod has enough injectives is much harder. Given an *R*-module M, let S denote the set of all pairs (I, f), where I is an ideal of R, and $f: I \to M$ is an R-module homomorphism. We write M' for the following pushout:

Write $M_0 := M$ and $M_{n+1} := (M_n)'$. If every ideal is finitely generated, then $M_\infty := \operatorname{colim}(M_0 \to M_1 \to M_2 \to \ldots)$ is an injective module. It obviously contains M as a submodule. To show that M_∞ is injective, we use Baer's criterion. Using the fact that every ideal is finitely generated, every map $f : I \to M_\infty$ factors through some finite stage of the colimit, let's say $f : I \to M_n$. The

extension problem will then admit a solution at the next stage: $f \bigwedge^{\uparrow} I \xrightarrow{=} R$. Here, the map

 $R \to \bigoplus_{(I,f)} R$ are the inclusions of the summands indexed by (I, f).

For general rings, i.e. without the condition that every ideal is finitely generated, then a similar construction can be made to work, provided one replaces $\operatorname{colim}_{n \in \mathbb{N}} M_n$ by a colimit indexed over all ordinals which are small than a suitably chosen cardinal. Let λ be the smallest cardinal which is bigger than the cardinality of R. For every ordinal α with $|\alpha| < \lambda$, define inductively $M_0 := M$, $M_{\alpha} := (M_{\beta})'$ if $\alpha = \beta + 1$, and $M_{\alpha} := \operatorname{colim}_{\beta < \alpha} M_{\beta}$ if α is a limit ordinal. Then $\operatorname{colim}_{|\alpha| < \lambda} M_{\alpha}$ is an injective that contains M as a submodule.

Week 7

Let A and B be abelian categories. Assume that A has enough projectives. Let $F : A \to B$ be a right exact functor. The nth *left derived functor* of F, denoted $L_nF : A \to B$ is defined by $X \to H_n(F(P_{\bullet}))$, where $P_{\bullet} \to X$ is a projective resolution. Let us now assume that A admits functorial projective resolutions. The *total left derived functor* of F, denoted $LF : A \to Ch(B)$ is defined by $X \to F(P_{\bullet})$. Here, Ch(B) denotes the category of chain complexes in B.

Assume now that A has enough injectives and that $F: A \to B$ is a left exact functor. The *n*th right derived functor of F, denoted $\mathbb{R}^n F: A \to B$ is defined by $X \to H^n(F(I^{\bullet}))$, where $X \to I^{\bullet}$ is an injective resolution. Let us now assume that A admits functorial injective resolutions. The total right derived functor of F, denoted $\mathbb{R}F: A \to Ch(B)$ is defined by $X \to F(I^{\bullet})$.

Two chain maps $f_{\bullet}, g_{\bullet}: C_{\bullet} \to D_{\bullet}$ are *chain homotopic* if there exists a degree -1 map $h: C_{\bullet} \to D_{\bullet}$ satisfying hd+dh = f-g. The notion of chain homotopy is made so that whenever $f_{\bullet}: C_{\bullet} \to D_{\bullet}$ and $g_{\bullet}: C_{\bullet} \to D_{\bullet}$ are chain homotopic maps, then $H_*(f_{\bullet}) = H_*(g_{\bullet}): H_*(C_{\bullet}) \to H_*(D_{\bullet})$.

If I_{\bullet} denotes the "interval" chain complex $I_{\bullet} = (\mathbb{Z}^2 \xleftarrow{\begin{pmatrix} 1\\-1 \end{pmatrix}} \mathbb{Z})$, then a chain homotopy between two maps $C_{\bullet} \to D_{\bullet}$ is the same thing as a map $\operatorname{tot}(C_{\bullet} \otimes I_{\bullet}) \to D_{\bullet}$. This is reminiscent to the situation in topology, where a homotopy between two continuous maps $X \to Y$ is defined to be a map $X \times [0,1] \to Y$. **Exercise 31.** Prove that $\{(m_{\alpha}) \in \prod_{\alpha \in P} M_{\alpha} : f_{\alpha\beta}(m_{\alpha}) = m_{\beta}, \forall \alpha < \beta \in P\}$ satisfies the universal property of a limit, and that $\bigoplus_{\alpha \in P} M_{\alpha}/\text{Span}\{m - f_{\alpha\beta}(m) : m \in M_{\alpha}\}$ satisfies the universal property of a colimit.

Exercise 32. Consider the following two proofs (you may take $P = \mathbb{N}$ if you want):

Lemma A: Let $\{M_{\alpha}\}_{\alpha \in P}$ be a diagram of <i>R</i> -modules indexed by some directed poset <i>P</i> . Then we have a canonical isomorphism	Lemma B: Let $\{M_{\alpha}\}_{\alpha \in P}$ be a diagram of <i>R</i> -modules indexed by (the opposite of) a directed poset. Then we have a canonical isomorphism
$\operatorname{Tor}_n(\operatorname{colim} M_\alpha, N) = \operatorname{colim} \operatorname{Tor}_n(M_\alpha, N).$	$\operatorname{Ext}^{n}(\operatorname{colim} M_{\alpha}, N) = \operatorname{lim} \operatorname{Ext}^{n}(M_{\alpha}, N).$
<i>Proof.</i> Let F_{\bullet}^{α} be the canonical free resolution of M_{α} . Then $F_{\bullet} := \operatorname{colim}_{\alpha \in P} F_{\bullet}^{\alpha}$ is the canonical free resolution of $M := \operatorname{colim}_{\alpha \in P} M_{\alpha}$. We then have	<i>Proof.</i> Let F_{\bullet}^{α} be the canonical free resolution of M_{α} . Then $F_{\bullet} := \operatorname{colim}_{\alpha \in P} F_{\bullet}^{\alpha}$ is the canonical free resolution of $M := \operatorname{colim}_{\alpha \in P} M_{\alpha}$. We then have
$\operatorname{colim}_{\alpha \in P} \operatorname{Tor}_{n}^{R}(M_{\alpha}, N)$	$\lim_{\alpha \in P} \operatorname{Ext}_{n}^{R}(M_{\alpha}, N)$
$= \operatorname{colim}_{\alpha \in P} H_n(F^{\alpha}_{\bullet} \otimes_R N)$	$= \lim_{\alpha \in P} H^n(\operatorname{Hom}_R(F_{\bullet}^{\alpha}, N))$
$= H_n(\operatorname{colim}_{\alpha \in P}(F^{\alpha}_{\bullet} \otimes_R N))$	$= H^n(\lim_{\alpha \in P}(\operatorname{Hom}_R(F_{\bullet}^{\alpha}, N)))$
$= H_n((\operatorname{colim}_{\alpha \in P} F^{\alpha}_{\bullet}) \otimes_R N)$	$= H^n(\operatorname{Hom}_R(\operatorname{colim}_{\alpha \in P} F^{\alpha}_{\bullet}, N))$
$=H_n(F_{\bullet}\otimes_R N)=\operatorname{Tor}_n^R(M,N).$	$= H^n(\operatorname{Hom}_R(F_{\bullet}, N)) = \operatorname{Ext}^n_R(M, N) \qquad \Box$

Lemma A is correct and its proof is correct, but Lemma B is wrong and its proof is flawed. Find the error in the proof of Lemma B, and illustrate the mistake by providing a counterexample. Explain (by filling the details of the proof) why the corresponding step in the proof of Lemma A is ok.

Exercise 33. Prove that a \mathbb{Z} -module is injective iff it is a (possibly infinite) direct sum of modules of the form \mathbb{Q} and $\mathbb{Z}[\frac{1}{n}]/\mathbb{Z}$.

Exercise 34. Let K be an algebraically closed field. Prove that a K[x]-module is injective iff it is a (possibly infinite) direct sum of modules of the form K[x] and $K[y, y^{-1}]/K[y]$ for y = x - a and $a \in K$.

Exercise 35. Let P be a directed poset. Prove that the category whose objects are functors $P \rightarrow AbGp$ and whose morphisms are natural transformations between such functors has enough projectives.

Exercise 36. Prove that the relation of chain homotopy is an equivalence relation.

Week 8

The total (co)chain complex of a bigraded (co)chain complex comes in two flavours: tot_{Π} and tot_{\oplus} .

If $A \leftarrow P_{\bullet}$ and $B \leftarrow Q_{\bullet}$ are projective resolutions, then the cochain complex $\operatorname{tot}_{\prod} (\operatorname{Hom}(P_{\bullet}, Q_{\bullet}))$ computes $\operatorname{Ext}(A, B)$.

Using this fact, the composition of homomorphisms $\operatorname{Hom}(A, B) \otimes \operatorname{Hom}(B, C) \to \operatorname{Hom}(A, C)$ induces a well-defined map $\operatorname{Ext}^{i}(A, B) \otimes \operatorname{Ext}^{j}(B, C) \to \operatorname{Ext}^{i+j}(A, C)$. In particular,

$$\operatorname{Ext}^*(A, A) := \bigoplus_{i=0}^{\infty} \operatorname{Ext}^i(A, A)$$

is a ring.

Writing $\underline{\operatorname{Hom}}(C_{\bullet}, D_{\bullet}) := \operatorname{tot}_{\prod} (\operatorname{Hom}(C_{\bullet}, D_{\bullet}))$, we have a canonical isomorphism

$$H^n\Big(\underline{\operatorname{Hom}}(C_{\bullet}, D_{\bullet})\Big) = \frac{\operatorname{degree}(-n) \operatorname{chain maps} C_{\bullet} \to D_{\bullet}}{\operatorname{maps which are chain-homotopic to zero}}$$

We performed the following Ext-ring computations in class:

- $\operatorname{Ext}_{k[x]}(k,k) = k[y]/y^2$, with y in degree 1.

- $\operatorname{Ext}_{k[x]/(x^2)}(k,k) = k[y]$, with y in degree 1. $\operatorname{Ext}_{k[x]/(x^3)}(k,k) = k[y,z]/(y^2)$, with y in degree 1 and z in degree 2. $\operatorname{Ext}_{k[x,y]}(k,k) = k\langle y, z \rangle/y^2, z^2, yz = -zy$, with both y and z in degree 1.

Exercise 37. Compute the Ext-ring $\text{Ext}_{\mathbb{Z}}(\mathbb{Z}/2, \mathbb{Z}/2)$.

Exercise 38. Compute the Ext-ring $\operatorname{Ext}_{\mathbb{Z}/4}(\mathbb{Z}/2,\mathbb{Z}/2)$.

Exercise 39. Compute the Ext-ring $\operatorname{Ext}_{\mathbb{Z}/8}(\mathbb{Z}/2,\mathbb{Z}/2)$.

Exercise 40. Compute the Ext-ring $\operatorname{Ext}_{\mathbb{Z}[x]}(\mathbb{Z}/2,\mathbb{Z}/2)$.

Exercise 41. Compute the Ext-ring $\operatorname{Ext}_{\mathbb{Z}[x]}(\mathbb{Z}/3, \mathbb{Z}/3)$.

Exercise 42. Compute the Ext-ring $\operatorname{Ext}_{\mathbb{Z}[x]/(x^2)}(\mathbb{Z}/2,\mathbb{Z}/2)$.