Problem 1 Prove by contradiction that the set $X := \{\frac{n}{n+1} : n \in \mathbb{N}\}$ does not admit a maximum. Prove that the set X does have a minimum.

Problem 2 State the Collatz conjecture.

Problem 3 Prove the following statements using induction:

• For all $n \ge 1$, the equation

$$\frac{1}{1} + \frac{1}{2} + \frac{1}{4} + \frac{1}{8} + \ldots + \frac{1}{2^n} = 2 - 2^{-n}$$

holds.

• For all $n \ge 5$, the inequality

$$\frac{1}{1} + \frac{1}{2} + \frac{1}{3} + \frac{1}{4} + \ldots + \frac{1}{n} < \frac{1}{2}n$$

holds.

• For all $n \ge 1$, the sum $\sum_{k=1}^{n} (k+2)$ is equal to $(n^2 + 5n)/2$.

Problem 4 Let a_n be the sequence of numbers defined recursively by

$$a_1 = 1, a_2 = 1$$
, and $a_n = a_{n-1} - a_{n-2}$ for $n \ge 3$.

Compute the first few values of this sequence and make a guess for the general formula for a_n . Prove your guess using induction.

Problem 5.

On the set
$$\mathbb{Z}$$
, is $xRy := \begin{cases} \text{True if } x + y \text{ is an even number} \\ \text{False otherwise} \end{cases}$ an equivalence relation?
On the set \mathbb{Q} , is $xRy := \begin{cases} \text{True if } x + y \text{ is an even number} \\ \text{False otherwise} \end{cases}$ an equivalence relation?

Given an example of a relation that is transitive but not reflexive.