
Exam for Foundations of Mathematics A. Henriques, December 2012.

Problem 1 Prove by contradiction that the set X := { n

n+1
: n ∈ N} does not admit

a maximum. Prove that the set X does have a minimum.

Problem 2 State the Collatz conjecture.

Problem 3 Prove the following statements using induction:
• For all n ≥ 1, the equation
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holds.
• For all n ≥ 5, the inequality
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holds.

• For all n ≥ 1, the sum

n
∑

k=1

(k + 2) is equal to (n2 + 5n)/2.

Problem 4 Let an be the sequence of numbers defined recursively by

a1 = 1, a2 = 1, and an = an−1 − an−2 for n ≥ 3.

Compute the first few values of this sequence and make a guess for the general for-
mula for an. Prove your guess using induction.

Problem 5 .

On the set Z, is xRy :=

{

True if x + y is an even number

False otherwise
an equivalence relation?

On the set Q, is xRy :=

{

True if x + y is an even number

False otherwise
an equivalence relation?

Given an example of a relation that is transitive but not reflexive.


