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THE STRONG OPERATOR TOPOLOGY ON B(H) AND THE DOUBLE
COMMUTANT THEOREM

ABSTRACT. These are the notes for a presentation on the strong and weak operator topolo-
gies on B(H) and on commutants of unital self-adjoint subalgebras of B(H) in the seminar
on von Neumann algebras in Utrecht. The main goal for this talk was to prove the double
commutant theorem of von Neumann. We will also give a proof of Vigiers theorem and
we will work out several useful properties of the commutant.

Recall that a seminorm on a vector space V is a map p : V→ [0,∞) with the properties
that (i) p(λx) = |λ |p(x) for every vector x ∈ V and every scalar λ and (ii) p(x+ y) ≤
p(x)+ p(y) for every pair of vectors x,y ∈ V. If P is a family of seminorms on V there is
a topology generated by P of which the subbasis is defined by the sets

{v ∈ V : p(v− x)< ε},

where ε > 0, p ∈P and x ∈ V. Hence a subset U of V is open if and only if for every
x ∈U there exist p1, . . . , pn ∈P , and ε > 0 with the property that

n⋂
i=1

{v ∈ V : pi(v− x)< ε} ⊂U.

A family P of seminorms on V is called separating if, for every non-zero vector x, there
exists a seminorm p in P such that p(x) 6= 0. The topology generated by a separating
family of seminors is always Hausdorff.

Definition 1. Suppose that H is a Hilbert space. The weak operator topology on B(H) is
the topology generated by collection {A 7→ |〈A(x),y〉| : x,y ∈H} of seminorms.

Lemma 2. For every net {Ai : i ∈ I} in B(H) we have that {Ai} converges in the weak
operator topology to A if and only if 〈Ai(x),y〉 → 〈A(x),y〉 for all x,y ∈H.

Proof. Suppose that the net {Ai : i ∈ I} converges weakly to A. Then, for every open set
U there exists i ∈ I such that A j ∈U whenever j ≥ i in I. In particular, for every x,y ∈ H
and ε > 0 we can take Ux,y,ε := {B ∈B(H) : |〈(A−B)(x),y〉|< ε}. Since for every ε > 0
there exists an iε ∈ I with the property that A j ∈Ux,y,ε whenever j ≥ iε , we see that the net
{〈(A−Ai)(x),y〉| : i ∈ I} converges to 0. And hence 〈Ai(x),y〉 → 〈A(x),y〉 for all x,y ∈H.

Suppose now that 〈Ai(x),y〉 → 〈A(x),y〉 for all x,y ∈ H and suppose that U ⊂B(H)
is weakly open with A ∈U . Then there are x1, . . . ,xn,y1, . . . ,yn ∈ H and ε > 0 with the
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property that
n⋂

k=1

{B ∈B(H) : |〈(A−B)(xk),yk〉|< ε} ⊂U

By assumption there are i1, . . . , in ∈ I with the property that |〈(A−A j)(xk),yk〉|< ε for all
j ≥ ik. This implies that A j ∈U for all j ≥ {i1, . . . , in}. and hence that Ai→ A in the weak
operator topology. �

Definition 3. The strong operator topology on B(H) is the topology generated by the
collection {A 7→ ‖A(x)‖ : x ∈H}.

The strong operator topology is the topology on B(H) in which convergence is equiv-
alent to pointwise convergence:

Lemma 4. A net {Ai : i ∈ I} in B(H) converges to A in the strong operator topology if
and only if Ai(x)→ A(x) for all x ∈H.

Proof. Suppose that Ai→ A in the strong operator topology. Then, for every x ∈H and for
every ε > 0, there exists an i ∈ I with the property that A j ∈ {B ∈B(H) : ‖(A−A j)(x)‖<
ε} for all j ≥ i in I, which shows that ‖(A−A j)(x)‖→ 0 and hence that A j(x)→ A(x).

On the other hand, suppose that Ai(x)→ A(x) for all x ∈H and let U be a strongly open
subset of B(H) which contains A. Then there are x1, . . . ,xn ∈H and ε > 0 such that

n⋂
k=1

{B ∈B(H) : ‖(A−B)(xk)‖< ε} ⊂U.

By assumption, there are i1, . . . , ik ∈ I with the property that ‖(A−A j)(xk)‖< ε whenever
j≥ ik. Hence for j≥ {i1, . . . , ik} it follows that A j ∈U and we conclude that Ai→ A in the
strong operator topology. �

Lemma 5. The weak operator topology is weaker than the strong operator topology and
the strong operator topology is weaker than the uniform topology on B(H).

Proof. Suppose first that U weakly open. Then we can find for every operator A in U
elements x1, . . . ,xn,y1, . . . ,yn ∈H and ε > 0 such that

n⋂
i=1

{B ∈B(H) : |〈A(xi)−B(xi),yi〉|< ε} ⊂U.

Without loss of generality we can assume that each yi is non-zero. Since |〈A(xi)−B(xi)〉| ≤
‖A(xi)−B(xi)‖‖yi‖ it follows that

{B ∈B(H) : ‖A(xi)−B(xi)‖ ≤ ε

‖yi‖}= {B ∈B(H) : ‖A(xi)−B(xi)‖‖yi‖ ≤ ε}
⊂ {B ∈B(H) : |〈A(xi)−B(xi),yi〉|< ε}

Hence if we take δ := min{ ε

‖yi‖ : 1≤ i≤ n} we see that

n⋂
i=1

{B ∈B(H) : ‖A(xi)−B(xi)‖ ≤ δ} ⊂U

and hence that U is open in the strong operator topology.
The same trick works to show that the strong operator topology is weaker than the

uniform topology on B(H). Indeed, we have the inequality ‖A(xi)−B(xi)‖≤ ‖A−B‖‖xi‖
and therefore we have the inclusion

{B ∈B(H) : ‖A−B‖‖x‖< ε} ⊂ {B ∈B(H) : ‖A(x)−B(x)‖< ε}
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for all x∈H and ε > 0. If U is open in the strong operator topology we can find x1, . . . ,xn ∈
H and ε > 0 for each bounded operator A, with the property that

n⋂
i=1

{B ∈B(H) : ‖A(xi)−B(xi)‖< ε} ⊂U.

We can safely assume that each xi is non-zero. Taking δ = min{ ε

‖xi‖ : 1≤ i≤ n} it follows
from the mentioned inclusion that

⋂n
i=1{B ∈B(H) : ‖A−B‖< δ} ⊂U . �

The following theorem basically says that an increasing net of positive operators has a
least upper bound and converges to it whenever it has an upper bound:

Theorem 6 (Vigiers theorem). Suppose that {Aλ : λ ∈ I} is a net of self-adjoint operators
on a Hilbert space H. If Aκ −Aλ is positive for all λ ≤ κ and if there is an M ∈ R such
that ‖Aλ‖ ≤M for all λ ∈ I, then {Aλ} is strongly convergent.

Proof. Note that we can always pick λ0 ∈ I and look at the net {Aλ −Aλ0 : λ ≥ λ0 ∈ I}, so
without loss of generality we can assume that the net {Aλ} consists of positive operators.
Hence the net {〈Aλ (x),x〉 : λ ∈ I} is increasing and bounded above by M‖x‖2 and therefore
the net {〈Aλ (x),x〉} is convergent for each x ∈H. For any x,y ∈H the polarisation identity

〈Aλ (x),y〉=
3

∑
k=0

ik〈Aλ (x+ iky),x+ iky〉

gives us that the net {〈Aλ (x),y〉} is also convergent. Denote its limit by σ(x,y); one
can verify that σ : H×H→ H defines a sesquilinear form on H which is bounded by
|σ(x,y)| ≤ M‖x‖‖y‖. Hence there is a bounded operator A for which σ(x,y) = 〈A(x),y〉
and ‖A‖= ‖σ‖. A is a positive operator, larger than any Aλ , since for every λ ∈ I and for
every ε > 0 there is a λ0 ≥ λ ∈ I with the property that |〈(A−Aκ)(x),x〉| < ε whenever
κ ≥ λ0 and

〈A(x),x〉−〈Aλ (x),x〉 ≥ 〈Aκ(x),x〉−〈Aλ (x),x〉− ε.

Since 〈Aκ(x),x〉 ≥ 〈Aλ (x),x〉 ≥ 0 it follows, by taking ε smaller and smaller, that A is
positive and Aλ ≤ A for all λ . In particular we can take the positive square root of A−Aλ

for all λ ∈ I. So we have

‖A(x)−Aλ (x)‖2 = ‖(A−Aλ )
1
2 (A−Aλ )

1
2 (x)‖2

≤ ‖A−Aλ‖‖(A−Aλ )
1
2 (x)‖2

≤ 2M〈(A−Aλ )(x),x〉 → 0

We conclude that Ai converges pointwise (hence strongly) to A. �

Definition 7. The commutant S′ of a subset S of an algebra A is the set

{a ∈A : as− sa = 0 for all s ∈ S}.

Since every element of S commutes with every element of S′ we have the inclusion
S⊂ S′′ (and also S′ ⊂ S′′′). Also, it is easy to see that if S⊂ T then T ′ ⊂ S′ and hence we
have S′′′ ⊂ S′. Therefore we have the identity

(1) S′ = S′′′

for every subset S of an algebra A .
Now suppose that A is a unital algebra and consider the map ϕ : A →Mn(A ), from A

to the n×n matrices with coefficients in A , which is defined by ϕ(a) = a1 (the matrix with
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a on every diagonal entry and zero everywhere else). This defines a unital homomorphism
and we have the following lemma concerning commutants:

Lemma 8. For ϕ : A →Mn(A ) as above and B a unital subalgebra of A we have
i. ϕ(B)′ = Mn(B′)

ii. ϕ(B)′′ = ϕ(B′′).

Proof. For the first assertion, suppose that x ∈B and that M ∈Mn(A ), then

(ϕ(X)M)i j = ∑
k

ϕ(X)ikMk j = XMi j and (Mϕ(X))i j = ∑
k

Mikϕ(X)k j = Mi jX

and therefore we see that M is in the commutant of ϕ(B) if and only if every coefficient
Mi j is an operator in the commutant B′ of B.

For the second assertion, let Ei j be the matrix-unit with the unit 1 of A at the i j-th
coefficient and zero everywhere else. Suppose that Ai j 6= 0 for some i and j with i 6= j and
some A ∈Mn(A ). Then, taking M = E ji — pay attention to the order of the indices and
note that M ∈ ϕ(B)′ — we see that

(AM)ii = ∑
k

AikMki = Ai j while (MA)ii = ∑
k

MikAki = 0

and hence that such A cannot be in the commutant of ϕ(A )′ whenever any of its off-
diagonal coefficients are non-zero. If we choose M = Ei j, then for all diagonal matrices A
we have

(AM)i j = ∑
k

AikMk j = Aii while (MA)i j = ∑
k

MikAk j = A j j.

It follows that A is of the form ϕ(x) for some x ∈A whenever A ∈ ϕ(A )′′. Suppose now
that M = bEii for some b ∈ B′. Then (Mϕ(x))pq = MpqX , which is zero except when
p = q = i. So Mϕ(x) = (bx)Eii; similarly we see that ϕ(x)M = (xb)Eii. We see that
ϕ(x) ∈ ϕ(B)′′ if and only if x ∈B′′, which concludes the proof. �

Lemma 9. For a Hilbert space H and a subset S of B(H) the commutant S′ is always
weakly closed.

Proof. Suppose that {Ai : i ∈ I} is a net in S′ which converges to A in the weak oper-
ator topology. We will show that A ∈ S′. Let X ∈ S and note that XA = AX if and
only if 〈XA(x),y〉 = 〈AX(x),y〉 for all x,y ∈ H. By assumtion we have 〈A(X(x)),y〉 =
limi〈Ai(X(x)),y〉 and also we have

〈XA(x),y〉= 〈A(x),X∗(y)〉= lim
i
〈Ai(x),X∗(y)〉= lim

i
〈XAi(x),y〉

Since XAi = AiX for all i ∈ I we have 〈AX(x),y〉 = limi〈AiX(x),y〉 = limi〈XAi(x),y〉 =
〈XA(x),y〉, and hence that A ∈ S′. �

Since the weak topology is weaker than the strong topology we have:

Corollary 10. For a Hilbert space H and a subset S of B(H) the commutant S′ of S is
always strongly closed.

Before stating the bicommutant theorem let us verify a useful property of unital self-
adjoint subalgebras of B(H):

Lemma 11. Suppose A is a self-adjoint algebra of linear operators on H and let K be a
closed subspace of H. The following are equivalent:

i. A (K)⊂K
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ii. A (K⊥)⊂K⊥
iii. [A ,PK] = 0.

A subspace K of H with either of these properties is called reducing (with respect to A ).

Proof. Suppose that A (K)⊂K, i.e. that A(y)∈K for all A ∈A and y∈K, let A ∈A and
let x ∈K⊥, y ∈K. Then 〈y,A(x)〉= 〈A∗(y),x〉= 0. Since A∗ ∈A we see that A(x) ∈K⊥,
so A (K⊥)⊂K⊥. The assertion that A (K⊥)⊂K⊥ implies that A (K)⊂K follows from
the fact that K = K⊥⊥.

Suppose again that A (K)⊂K, let A ∈A and let x ∈H. Then

A(PK(x))−PK(A(x)) = A(PK(x))−PK(A(PK(x)+PK⊥(x)))

= A(PK(x))−PK(A(PK(x))),

which is zero and therefore [A,PK] = 0. As this is true for all A ∈A we see that [A ,PK] =
0. For the last part, suppose that [A ,PK] = 0, let x ∈K and let y ∈K⊥. Then

〈A(y),x〉= 〈A(y),PK(x)〉= 〈PK(A(y)),x〉= 〈A(PK(y)),x〉= 0

for all A ∈A and hence we see that A(K⊥)⊂K⊥ for all A ∈A , so A (K⊥)⊂K⊥. �

Theorem 12 (The double commutant theorem of von Neumann). Suppose that H is a
Hilbert space. Then A ′′ is the strong closure of A for every unital self-adjoint subalgebra
A of B(H).

The proof requires the following observation:

Lemma 13. Suppose A is a unital self-adjoint subalgebra of B(H). For every A ∈ A ′′

and every x ∈H there is a net {Ai : i ∈ I} ⊂A such that Ai(x)→ A(x).

Proof. Suppose that A ∈ A ′′, that x ∈ H and that K := cl{X(x) : X ∈ A } ≤ H. Then
A (K)⊂K and hence by lemma 11 it follows that every operator in A commutes with the
projection PK and hence that [A,PK] = 0. Since the identity idH is an element of A we see
that x∈K and therefore that A(x) = A(PK(x)) = PK(A(x))∈K as well. Since K is closed it
follows that there is a net {Xi : i ∈ I} of operators in A with the property that Xi(x)→ A(x)
as i→ ∞. �

Proof of theorem 12. Suppose that A ∈ A ′′ and let W be a strong neighborhood of A. If
we can show that W∩A 6=∅ it follows that A ′′ is the strong closure of A . Since W is a
strong neighborhood of A there exist x1, . . . ,xn ∈H and ε > 0 such that

n⋂
i=1

{X ∈B(H) : ‖(A−X)(xi)‖< ε} ⊂W.

Now consider the map ϕ : B(H)→Mn(B(H)) =B(Hn) as in lemma 8. Then ϕ is a unital
∗-homomorphism and ϕ(A) commutes with all the n×n matrices with coefficients in A ′.
Also, we can apply lemma 13 in the situation where we take the Hilbert space Hn in place
of H to see that there is a net {Ai : i ∈ I} ⊂A with the property that ϕ(Ai)(x1, . . . ,xn)→
ϕ(A)(x1, . . . ,xn), which is equivalent with the assertion that Ai(x j)→ A(x j) for 1≤ j ≤ n.
In particular, there is an i0 ∈ I with the property that ‖(A−Ai)(x j)‖ < ε for all 1 ≤ j ≤ n
and i≥ i0. Hence we see that Ai ∈W for i≥ i0, and the theorem is proven. �

To summarize, the double commutant of a unital self-adjoint subalgebra of B(H) is al-
ways weakly closed, this is immediate from lemma 9. Weakly closed sets are also strongly
closed by lemma 5 and finally the double commutant theorem, theorem 12, revealed that
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the strongly closed unital self-adjoint subalgebras of B(H) are always their own double
commutant. So we have

Corollary 14. For a unital self-adjoint subalgebra A of B(H) the following are equiva-
lent:

i. A is weakly closed,
ii. A is strongly closed,

iii. A = A ′′.
If A satisfies either of these conditions we say that A is a von Neumann algebra on H.
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