Egbert Rijke Utrecht University e.m.rijke@gmail.com

THE STRONG OPERATOR TOPOLOGY ON $\mathscr{B}(H)$ AND THE DOUBLE COMMUTANT THEOREM

ABSTRACT. These are the notes for a presentation on the strong and weak operator topologies on $\mathscr{B}(\mathbf{H})$ and on commutants of unital self-adjoint subalgebras of $\mathscr{B}(\mathbf{H})$ in the seminar on von Neumann algebras in Utrecht. The main goal for this talk was to prove the double commutant theorem of von Neumann. We will also give a proof of Vigiers theorem and we will work out several useful properties of the commutant.

Recall that a seminorm on a vector space **V** is a map $p : \mathbf{V} \to [0, \infty)$ with the properties that (i) $p(\lambda x) = |\lambda|p(x)$ for every vector $x \in \mathbf{V}$ and every scalar λ and (ii) $p(x+y) \le p(x) + p(y)$ for every pair of vectors $x, y \in \mathbf{V}$. If \mathscr{P} is a family of seminorms on **V** there is a topology generated by \mathscr{P} of which the subbasis is defined by the sets

$$\{v \in \mathbf{V} : p(v-x) < \varepsilon\},\$$

where $\varepsilon > 0$, $p \in \mathscr{P}$ and $x \in \mathbf{V}$. Hence a subset U of \mathbf{V} is open if and only if for every $x \in U$ there exist $p_1, \ldots, p_n \in \mathscr{P}$, and $\varepsilon > 0$ with the property that

$$\bigcap_{i=1}^n \{v \in \mathbf{V} : p_i(v-x) < \varepsilon\} \subset U.$$

A family \mathscr{P} of seminorms on V is called separating if, for every non-zero vector x, there exists a seminorm p in \mathscr{P} such that $p(x) \neq 0$. The topology generated by a separating family of seminors is always Hausdorff.

Definition 1. Suppose that **H** is a Hilbert space. The weak operator topology on $\mathscr{B}(\mathbf{H})$ is the topology generated by collection $\{A \mapsto |\langle A(x), y \rangle| : x, y \in \mathbf{H}\}$ of seminorms.

Lemma 2. For every net $\{A_i : i \in I\}$ in $\mathscr{B}(\mathbf{H})$ we have that $\{A_i\}$ converges in the weak operator topology to A if and only if $\langle A_i(x), y \rangle \rightarrow \langle A(x), y \rangle$ for all $x, y \in \mathbf{H}$.

Proof. Suppose that the net $\{A_i : i \in I\}$ converges weakly to A. Then, for every open set U there exists $i \in I$ such that $A_j \in U$ whenever $j \ge i$ in I. In particular, for every $x, y \in \mathbf{H}$ and $\varepsilon > 0$ we can take $U_{x,y,\varepsilon} := \{B \in \mathscr{B}(\mathbf{H}) : |\langle (A - B)(x), y \rangle| < \varepsilon\}$. Since for every $\varepsilon > 0$ there exists an $i_{\varepsilon} \in I$ with the property that $A_j \in U_{x,y,\varepsilon}$ whenever $j \ge i_{\varepsilon}$, we see that the net $\{\langle (A - A_i)(x), y \rangle| : i \in I\}$ converges to 0. And hence $\langle A_i(x), y \rangle \to \langle A(x), y \rangle$ for all $x, y \in \mathbf{H}$.

Suppose now that $\langle A_i(x), y \rangle \rightarrow \langle A(x), y \rangle$ for all $x, y \in \mathbf{H}$ and suppose that $U \subset \mathscr{B}(\mathbf{H})$ is weakly open with $A \in U$. Then there are $x_1, \ldots, x_n, y_1, \ldots, y_n \in \mathbf{H}$ and $\varepsilon > 0$ with the

property that

$$\bigcap_{k=1}^{n} \{ B \in \mathscr{B}(\mathbf{H}) : |\langle (A-B)(x_k), y_k \rangle| < \varepsilon \} \subset U$$

By assumption there are $i_1, \ldots, i_n \in I$ with the property that $|\langle (A - A_j)(x_k), y_k \rangle| < \varepsilon$ for all $j \ge i_k$. This implies that $A_j \in U$ for all $j \ge \{i_1, \ldots, i_n\}$. and hence that $A_i \to A$ in the weak operator topology.

Definition 3. The strong operator topology on $\mathscr{B}(\mathbf{H})$ is the topology generated by the collection $\{A \mapsto ||A(x)|| : x \in \mathbf{H}\}$.

The strong operator topology is the topology on $\mathscr{B}(\mathbf{H})$ in which convergence is equivalent to pointwise convergence:

Lemma 4. A net $\{A_i : i \in I\}$ in $\mathscr{B}(\mathbf{H})$ converges to A in the strong operator topology if and only if $A_i(x) \to A(x)$ for all $x \in \mathbf{H}$.

Proof. Suppose that $A_i \to A$ in the strong operator topology. Then, for every $x \in \mathbf{H}$ and for every $\varepsilon > 0$, there exists an $i \in I$ with the property that $A_j \in \{B \in \mathscr{B}(\mathbf{H}) : ||(A - A_j)(x)|| < \varepsilon\}$ for all $j \ge i$ in I, which shows that $||(A - A_j)(x)|| \to 0$ and hence that $A_j(x) \to A(x)$.

On the other hand, suppose that $A_i(x) \to A(x)$ for all $x \in \mathbf{H}$ and let U be a strongly open subset of $\mathscr{B}(\mathbf{H})$ which contains A. Then there are $x_1, \ldots, x_n \in \mathbf{H}$ and $\varepsilon > 0$ such that

$$\bigcap_{k=1}^{n} \{ B \in \mathscr{B}(\mathbf{H}) : \| (A - B)(x_k) \| < \varepsilon \} \subset U.$$

By assumption, there are $i_1, \ldots, i_k \in I$ with the property that $||(A - A_j)(x_k)|| < \varepsilon$ whenever $j \ge i_k$. Hence for $j \ge \{i_1, \ldots, i_k\}$ it follows that $A_j \in U$ and we conclude that $A_i \to A$ in the strong operator topology.

Lemma 5. The weak operator topology is weaker than the strong operator topology and the strong operator topology is weaker than the uniform topology on $\mathscr{B}(\mathbf{H})$.

Proof. Suppose first that *U* weakly open. Then we can find for every operator *A* in *U* elements $x_1, \ldots, x_n, y_1, \ldots, y_n \in \mathbf{H}$ and $\varepsilon > 0$ such that

$$\bigcap_{i=1}^{n} \{ B \in \mathscr{B}(\mathbf{H}) : |\langle A(x_i) - B(x_i), y_i \rangle| < \varepsilon \} \subset U.$$

Without loss of generality we can assume that each y_i is non-zero. Since $|\langle A(x_i) - B(x_i) \rangle| \le ||A(x_i) - B(x_i)|| ||y_i||$ it follows that

$$\begin{aligned} \{B \in \mathscr{B}(\mathbf{H}) : \|A(x_i) - B(x_i)\| &\leq \frac{\varepsilon}{\|y_i\|}\} = \{B \in \mathscr{B}(\mathbf{H}) : \|A(x_i) - B(x_i)\| \|y_i\| \leq \varepsilon\} \\ &\subset \{B \in \mathscr{B}(\mathbf{H}) : |\langle A(x_i) - B(x_i), y_i\rangle| < \varepsilon\} \end{aligned}$$

Hence if we take $\delta := \min\{\frac{\varepsilon}{\|y_i\|} : 1 \le i \le n\}$ we see that

$$\bigcap_{i=1}^{n} \{B \in \mathscr{B}(\mathbf{H}) : \|A(x_i) - B(x_i)\| \le \delta\} \subset U$$

and hence that U is open in the strong operator topology.

The same trick works to show that the strong operator topology is weaker than the uniform topology on $\mathscr{B}(\mathbf{H})$. Indeed, we have the inequality $||A(x_i) - B(x_i)|| \le ||A - B|| ||x_i||$ and therefore we have the inclusion

$$\{B \in \mathscr{B}(\mathbf{H}) : \|A - B\| \| \| \| < \varepsilon\} \subset \{B \in \mathscr{B}(\mathbf{H}) : \|A(x) - B(x)\| < \varepsilon\}$$

for all $x \in \mathbf{H}$ and $\varepsilon > 0$. If *U* is open in the strong operator topology we can find $x_1, \ldots, x_n \in \mathbf{H}$ and $\varepsilon > 0$ for each bounded operator *A*, with the property that

$$\bigcap_{i=1}^{n} \{ B \in \mathscr{B}(\mathbf{H}) : \|A(x_i) - B(x_i)\| < \varepsilon \} \subset U.$$

We can safely assume that each x_i is non-zero. Taking $\delta = \min\{\frac{\varepsilon}{\|x_i\|} : 1 \le i \le n\}$ it follows from the mentioned inclusion that $\bigcap_{i=1}^n \{B \in \mathscr{B}(\mathbf{H}) : \|A - B\| < \delta\} \subset U$. \Box

The following theorem basically says that an increasing net of positive operators has a least upper bound and converges to it whenever it has an upper bound:

Theorem 6 (Vigiers theorem). Suppose that $\{A_{\lambda} : \lambda \in I\}$ is a net of self-adjoint operators on a Hilbert space **H**. If $A_{\kappa} - A_{\lambda}$ is positive for all $\lambda \leq \kappa$ and if there is an $M \in \mathbb{R}$ such that $||A_{\lambda}|| \leq M$ for all $\lambda \in I$, then $\{A_{\lambda}\}$ is strongly convergent.

Proof. Note that we can always pick $\lambda_0 \in I$ and look at the net $\{A_{\lambda} - A_{\lambda_0} : \lambda \ge \lambda_0 \in I\}$, so without loss of generality we can assume that the net $\{A_{\lambda}\}$ consists of positive operators. Hence the net $\{\langle A_{\lambda}(x), x \rangle : \lambda \in I\}$ is increasing and bounded above by $M ||x||^2$ and therefore the net $\{\langle A_{\lambda}(x), x \rangle\}$ is convergent for each $x \in \mathbf{H}$. For any $x, y \in \mathbf{H}$ the polarisation identity

$$\langle A_{\lambda}(x), y \rangle = \sum_{k=0}^{3} i^{k} \langle A_{\lambda}(x+i^{k}y), x+i^{k}y \rangle$$

gives us that the net $\{\langle A_{\lambda}(x), y \rangle\}$ is also convergent. Denote its limit by $\sigma(x,y)$; one can verify that $\sigma : \mathbf{H} \times \mathbf{H} \to \mathbf{H}$ defines a sesquilinear form on \mathscr{H} which is bounded by $|\sigma(x,y)| \leq M ||x|| ||y||$. Hence there is a bounded operator A for which $\sigma(x,y) = \langle A(x), y \rangle$ and $||A|| = ||\sigma||$. A is a positive operator, larger than any A_{λ} , since for every $\lambda \in I$ and for every $\varepsilon > 0$ there is a $\lambda_0 \geq \lambda \in I$ with the property that $|\langle (A - A_{\kappa})(x), x \rangle| < \varepsilon$ whenever $\kappa \geq \lambda_0$ and

$$\langle A(x),x
angle - \langle A_{\lambda}(x),x
angle \geq \langle A_{\kappa}(x),x
angle - \langle A_{\lambda}(x),x
angle - arepsilon.$$

Since $\langle A_{\kappa}(x), x \rangle \geq \langle A_{\lambda}(x), x \rangle \geq 0$ it follows, by taking ε smaller and smaller, that *A* is positive and $A_{\lambda} \leq A$ for all λ . In particular we can take the positive square root of $A - A_{\lambda}$ for all $\lambda \in I$. So we have

$$\|A(x) - A_{\lambda}(x)\|^{2} = \|(A - A_{\lambda})^{\frac{1}{2}}(A - A_{\lambda})^{\frac{1}{2}}(x)\|^{2}$$

$$\leq \|A - A_{\lambda}\|\|(A - A_{\lambda})^{\frac{1}{2}}(x)\|^{2}$$

$$\leq 2M\langle (A - A_{\lambda})(x), x \rangle \to 0$$

We conclude that A_i converges pointwise (hence strongly) to A.

Definition 7. The commutant S' of a subset S of an algebra \mathscr{A} is the set

$$\{a \in \mathscr{A} : as - sa = 0 \text{ for all } s \in S\}.$$

Since every element of S commutes with every element of S' we have the inclusion $S \subset S''$ (and also $S' \subset S'''$). Also, it is easy to see that if $S \subset T$ then $T' \subset S'$ and hence we have $S''' \subset S'$. Therefore we have the identity

\$' = \$''

for every subset S of an algebra \mathscr{A} .

Now suppose that \mathscr{A} is a unital algebra and consider the map $\varphi : \mathscr{A} \to M_n(\mathscr{A})$, from \mathscr{A} to the $n \times n$ matrices with coefficients in \mathscr{A} , which is defined by $\varphi(a) = a\mathbf{1}$ (the matrix with

a on every diagonal entry and zero everywhere else). This defines a unital homomorphism and we have the following lemma concerning commutants:

Lemma 8. For $\varphi : \mathscr{A} \to M_n(\mathscr{A})$ as above and \mathscr{B} a unital subalgebra of \mathscr{A} we have

i.
$$\varphi(\mathscr{B})' = M_n(\mathscr{B}')$$

ii. $\varphi(\mathscr{B})'' = \varphi(\mathscr{B}'')$.

4

Proof. For the first assertion, suppose that $x \in \mathscr{B}$ and that $M \in M_n(\mathscr{A})$, then

$$(\varphi(X)M)_{ij} = \sum_{k} \varphi(X)_{ik} M_{kj} = X M_{ij}$$
 and $(M\varphi(X))_{ij} = \sum_{k} M_{ik} \varphi(X)_{kj} = M_{ij} X$

and therefore we see that *M* is in the commutant of $\varphi(\mathscr{B})$ if and only if every coefficient M_{ij} is an operator in the commutant \mathscr{B}' of \mathscr{B} .

For the second assertion, let E_{ij} be the matrix-unit with the unit 1 of \mathscr{A} at the *ij*-th coefficient and zero everywhere else. Suppose that $A_{ij} \neq 0$ for some *i* and *j* with $i \neq j$ and some $A \in M_n(\mathscr{A})$. Then, taking $M = E_{ji}$ — pay attention to the order of the indices and note that $M \in \varphi(\mathscr{B})'$ — we see that

$$(AM)_{ii} = \sum_{k} A_{ik} M_{ki} = A_{ij}$$
 while $(MA)_{ii} = \sum_{k} M_{ik} A_{ki} = 0$

and hence that such A cannot be in the commutant of $\varphi(\mathscr{A})'$ whenever any of its offdiagonal coefficients are non-zero. If we choose $M = E_{ij}$, then for all diagonal matrices A we have

$$(AM)_{ij} = \sum_{k} A_{ik} M_{kj} = A_{ii}$$
 while $(MA)_{ij} = \sum_{k} M_{ik} A_{kj} = A_{jj}$.

It follows that *A* is of the form $\varphi(x)$ for some $x \in \mathscr{A}$ whenever $A \in \varphi(\mathscr{A})''$. Suppose now that $M = bE_{ii}$ for some $b \in \mathscr{B}'$. Then $(M\varphi(x))_{pq} = M_{pq}X$, which is zero except when p = q = i. So $M\varphi(x) = (bx)E_{ii}$; similarly we see that $\varphi(x)M = (xb)E_{ii}$. We see that $\varphi(x) \in \varphi(\mathscr{B})''$ if and only if $x \in \mathscr{B}''$, which concludes the proof.

Lemma 9. For a Hilbert space **H** and a subset S of $\mathscr{B}(\mathbf{H})$ the commutant S' is always weakly closed.

Proof. Suppose that $\{A_i : i \in I\}$ is a net in S' which converges to A in the weak operator topology. We will show that $A \in S'$. Let $X \in S$ and note that XA = AX if and only if $\langle XA(x), y \rangle = \langle AX(x), y \rangle$ for all $x, y \in \mathbf{H}$. By assumtion we have $\langle A(X(x)), y \rangle = \lim_{i \neq j} \langle A_i(X(x)), y \rangle$ and also we have

$$\langle XA(x), y \rangle = \langle A(x), X^*(y) \rangle = \lim_i \langle A_i(x), X^*(y) \rangle = \lim_i \langle XA_i(x), y \rangle$$

Since $XA_i = A_iX$ for all $i \in \mathscr{I}$ we have $\langle AX(x), y \rangle = \lim_i \langle A_iX(x), y \rangle = \lim_i \langle XA_i(x), y \rangle = \langle XA(x), y \rangle$, and hence that $A \in S'$.

Since the weak topology is weaker than the strong topology we have:

Corollary 10. For a Hilbert space **H** and a subset S of $\mathscr{B}(\mathbf{H})$ the commutant S' of S is always strongly closed.

Before stating the bicommutant theorem let us verify a useful property of unital selfadjoint subalgebras of $\mathscr{B}(\mathbf{H})$:

Lemma 11. Suppose \mathscr{A} is a self-adjoint algebra of linear operators on **H** and let **K** be a closed subspace of **H**. The following are equivalent:

i. $\mathscr{A}(\mathbf{K}) \subset \mathbf{K}$

5

ii.
$$\mathscr{A}(\mathbf{K}^{\perp}) \subset \mathbf{K}^{\perp}$$

iii. $[\mathscr{A}, P_{\mathbf{K}}] = 0.$

A subspace **K** of **H** with either of these properties is called reducing (with respect to \mathscr{A}).

Proof. Suppose that $\mathscr{A}(\mathbf{K}) \subset \mathbf{K}$, i.e. that $A(y) \in \mathbf{K}$ for all $A \in \mathscr{A}$ and $y \in \mathbf{K}$, let $A \in \mathscr{A}$ and let $x \in \mathbf{K}^{\perp}$, $y \in \mathbf{K}$. Then $\langle y, A(x) \rangle = \langle A^*(y), x \rangle = 0$. Since $A^* \in \mathscr{A}$ we see that $A(x) \in \mathbf{K}^{\perp}$, so $\mathscr{A}(\mathbf{K}^{\perp}) \subset \mathbf{K}^{\perp}$. The assertion that $\mathscr{A}(\mathbf{K}^{\perp}) \subset \mathbf{K}^{\perp}$ implies that $\mathscr{A}(\mathbf{K}) \subset \mathbf{K}$ follows from the fact that $\mathbf{K} = \mathbf{K}^{\perp \perp}$.

Suppose again that $\mathscr{A}(\mathbf{K}) \subset \mathbf{K}$, let $A \in \mathscr{A}$ and let $x \in \mathbf{H}$. Then

$$\begin{aligned} A(P_{\mathbf{K}}(x)) - P_{\mathbf{K}}(A(x)) &= A(P_{\mathbf{K}}(x)) - P_{\mathbf{K}}(A(P_{\mathbf{K}}(x) + P_{\mathbf{K}^{\perp}}(x))) \\ &= A(P_{\mathbf{K}}(x)) - P_{\mathbf{K}}(A(P_{\mathbf{K}}(x))), \end{aligned}$$

which is zero and therefore $[A, P_{\mathbf{K}}] = 0$. As this is true for all $A \in \mathscr{A}$ we see that $[\mathscr{A}, P_{\mathbf{K}}] = 0$. For the last part, suppose that $[\mathscr{A}, P_{\mathbf{K}}] = 0$, let $x \in \mathbf{K}$ and let $y \in \mathbf{K}^{\perp}$. Then

$$\langle A(y), x \rangle = \langle A(y), P_{\mathbf{K}}(x) \rangle = \langle P_{\mathbf{K}}(A(y)), x \rangle = \langle A(P_{\mathbf{K}}(y)), x \rangle = 0$$

for all $A \in \mathscr{A}$ and hence we see that $A(\mathbf{K}^{\perp}) \subset \mathbf{K}^{\perp}$ for all $A \in \mathscr{A}$, so $\mathscr{A}(\mathbf{K}^{\perp}) \subset \mathbf{K}^{\perp}$. \Box

Theorem 12 (The double commutant theorem of von Neumann). Suppose that **H** is a Hilbert space. Then \mathscr{A}'' is the strong closure of \mathscr{A} for every unital self-adjoint subalgebra \mathscr{A} of $\mathscr{B}(\mathbf{H})$.

The proof requires the following observation:

Lemma 13. Suppose \mathscr{A} is a unital self-adjoint subalgebra of $\mathscr{B}(\mathbf{H})$. For every $A \in \mathscr{A}''$ and every $x \in \mathbf{H}$ there is a net $\{A_i : i \in I\} \subset \mathscr{A}$ such that $A_i(x) \to A(x)$.

Proof. Suppose that $A \in \mathscr{A}''$, that $x \in \mathbf{H}$ and that $\mathbf{K} := cl\{X(x) : X \in \mathscr{A}\} \leq \mathbf{H}$. Then $\mathscr{A}(\mathbf{K}) \subset \mathbf{K}$ and hence by lemma 11 it follows that every operator in \mathscr{A} commutes with the projection $P_{\mathbf{K}}$ and hence that $[A, P_{\mathbf{K}}] = 0$. Since the identity $id_{\mathbf{H}}$ is an element of \mathscr{A} we see that $x \in \mathbf{K}$ and therefore that $A(x) = A(P_{\mathbf{K}}(x)) = P_{\mathbf{K}}(A(x)) \in \mathbf{K}$ as well. Since \mathbf{K} is closed it follows that there is a net $\{X_i : i \in I\}$ of operators in \mathscr{A} with the property that $X_i(x) \to A(x)$ as $i \to \infty$.

Proof of theorem 12. Suppose that $A \in \mathscr{A}''$ and let \mathcal{W} be a strong neighborhood of A. If we can show that $\mathcal{W} \cap \mathscr{A} \neq \emptyset$ it follows that \mathscr{A}'' is the strong closure of \mathscr{A} . Since \mathcal{W} is a strong neighborhood of A there exist $x_1, \ldots, x_n \in \mathbf{H}$ and $\varepsilon > 0$ such that

$$\bigcap_{i=1}^{n} \{ X \in \mathscr{B}(\mathbf{H}) : \| (A - X)(x_i) \| < \varepsilon \} \subset \mathcal{W}.$$

Now consider the map $\varphi : \mathscr{B}(\mathbf{H}) \to M_n(\mathscr{B}(\mathbf{H})) = \mathscr{B}(\mathbf{H}^n)$ as in lemma 8. Then φ is a unital *-homomorphism and $\varphi(A)$ commutes with all the $n \times n$ matrices with coefficients in \mathscr{A}' . Also, we can apply lemma 13 in the situation where we take the Hilbert space \mathbf{H}^n in place of \mathbf{H} to see that there is a net $\{A_i : i \in I\} \subset \mathscr{A}$ with the property that $\varphi(A_i)(x_1, \ldots, x_n) \to \varphi(A)(x_1, \ldots, x_n)$, which is equivalent with the assertion that $A_i(x_j) \to A(x_j)$ for $1 \le j \le n$. In particular, there is an $i_0 \in I$ with the property that $||(A - A_i)(x_j)|| < \varepsilon$ for all $1 \le j \le n$ and $i \ge i_0$. Hence we see that $A_i \in \mathcal{W}$ for $i \ge i_0$, and the theorem is proven.

To summarize, the double commutant of a unital self-adjoint subalgebra of $\mathscr{B}(\mathbf{H})$ is always weakly closed, this is immediate from lemma 9. Weakly closed sets are also strongly closed by lemma 5 and finally the double commutant theorem, theorem 12, revealed that

the strongly closed unital self-adjoint subalgebras of $\mathscr{B}(\mathbf{H})$ are always their own double commutant. So we have

Corollary 14. For a unital self-adjoint subalgebra \mathscr{A} of $\mathscr{B}(\mathbf{H})$ the following are equivalent:

A is weakly closed, *A* is strongly closed, *A* = A["].

If \mathscr{A} satisfies either of these conditions we say that \mathscr{A} is a von Neumann algebra on **H**.

References

- John B. Conway. A course in functional analysis, volume 96 of Graduate Texts in Mathematics. Springer-Verlag, New York, second edition, 1990.
- [2] Vaughan F.R. Jones. von neumann algebras. Lecture notes on http://www.math.berkeley.edu/~vfr/ MATH20909/VonNeumann2009.pdf, 2010.
- [3] Gerard J. Murphy. C*-algebras and operator theory. Academic Press Inc., Boston, MA, 1990.