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Abstract

In this paper, we will address quasi-triangular Hopf algebras and the quan-

tum double construction. First, we will recapture definitions concerning

Hopf algebras. Next, quasi-triangularity is introduced. We will start with

some axioms descriping the algebra, after which we will take a physical

approach and derive a key equation. Finally, we will see that any quasi-

triangular bialgebra produces solutions to the Yang-Baxter equation. The

last chapter deals with the quantum double construction. We will discover

that any quantum double construction allows us to find universal R-matrices

that satisfy the Yang-Baxter equation.

1 Recapturing Hopf Algebras

Before we start exploring quasi-triangularity, we will recapture some definitions
that we have seen in the previous class (14 November) where they were introduced
by Alexandros Aerakis. We will define the following:

i. we have an algebra (A, m, η; ∆, �), where A is the associative algebra on
the field C with:

- the multiplication m: A⊗A → A,
- the unit η: C → A,
- the co-multiplication ∆: A → A⊗A
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- and the co-unit �: A → C.

ii. An algebra is called a bialgebra if the compatibility conditions hold, i.e.:

- ∆(ab) = ∆(a)∆(b),
- and �(ab) = �(a)�(b).

iii. A Hopf algebra is a bialgebra with an antipode γ: A → A which is an
antihomomorphism, i.e. γ(ab) = γ(b)γ(a) satisfying:

m (γ ⊗ I)∆(a) = m (I⊗ γ)∆(a) = �(a)η, ∀a ∈ A.

The previous conditions tell us how a Hopf algebra is defined. Next, we will look
at commutativity and co-commutativity.

iv. If the multiplication m is commutative, we call the algebra commutative. If
m is not commutative, the agebra is also non-commutative. Commutativity
means that the following diagram holds:

Diagram 1: Commutativity

with the permutation map:

σA,A : A⊗A → A⊗A
a⊗ b → b⊗ a.

So commutativity means that we have:

ab ≡ m (a⊗ b) = m (σA,A (a⊗ b)) = m (b⊗ a) ≡ ba, ∀a, b ∈ A.

v. Just like the multiplication, the co-multiplication ∆ may or may not be
commutative. An algebra is co-commutative if the following holds:

Diagram 2: Co-commutativity
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which is equal to saying:

∆(a) = σA,A∆(a) ≡ ∆op(a), ∀a ∈ A. (1)

We are primarily interested in Hopf algebras that are neither commutive nor co-
commutative. Such algebras are referred to as quantum groups. This means for
the just listed defitions, that we want i-iii to hold, and iv and v not to hold.

Considering the diagrams shown here, and the ones we have seen in previous
classes, we observe that if we reverse the arrows and interchange m with ∆ and η

with � we retrieve the same diagrams. The antipode γ remains unchanged under
such an operation and therefore, its existence is higly non-trivial. This is why we
are more interested in Hopf algebras than in bi-algebras.1

2 Quasi-Triangular Hopf Algebras

In this chapter, we will explore the concept of quasi-triangular Hopf algebras,
also referred to as braided Hopf algebras. We will see that there are some extra
properties, in addition to what we have discussed in the previous chapter, that
define such algebras. These properties will be explored in the first section. In the
second section, we will take a physical point of view and actually derive one of
these properties from the Yang-Baxter equation of the six vertex model. Finally,
we will address the question of why we are interested in such algebras. We will
prove that all quasi-triangular bialgebras produce solutions to the Yang-Baxter
equation.

2.1 Definining Quasi-Triangularity
In this section we will define quasi-triangularity and we will show that it satisfies
the Yang-Baxter equation. We start with the following axioms.

Axiom 1 Let A be a Hopf algebra. We call it quasi-cocommutative if there exists
an invertible element R ∈ A⊗A, with R being the universal R-matrix, such that:

∆op(a) = R∆(a)R−1
, ∀a ∈ A, (2)

where ∆op = σA,A ◦∆, and σA,A are defined in the first chapter.
1
For this section I have used [1], pp. 184-186.
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Axiom 2 We call a quasi-cocommutative Hopf algebra a quasi-triangular Hopf
algebra, if the following is satisfied:

(I⊗∆)R = R13R12, (3)
(∆⊗ I)R = R13R23, (4)

with R being the universal R-matrix.

We write R =
�

i Ai ⊗ Bi such that:

R12 =
�

i

Ai ⊗ Bi ⊗ I,

R13 =
�

i

Ai ⊗ I⊗ Bi,

R23 =
�

i

I⊗ Ai ⊗ Bi.

These two axioms have the following consequence.

Consequence Let A be a quasi-triangular Hopf algebra, then the universal R-
matrix R satisfies the Yang-Baxter equation:

R12R13R23 = R23R13R12 (5)

and we have:
(�⊗ I)R = 1 = (I⊗ �)R. (6)

Moreover, if A has an invertible antipode γ
−1, we also have:

(γ ⊗ I)R =
�
I⊗ γ

−1
�
R = R−1

, (7)

and
(γ ⊗ γ)R = R. (8)

Equation(5) is the main equation in this axiom. Equations(6-8) are listed for the
purpose of completion. Equation(5) can be derived from equations(2-4). We start
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with the following:

[(σ ◦∆)⊗ I]R =
�

i

(∆op ⊗ I) (Ai ⊗ Bi)

=
�

i

∆op (Ai)⊗ Bi

=
�

i

R12∆(Ai)R−1
12 ⊗ Bi

= R12

�
�

i

∆(Ai)⊗ Bi

�
R−1

12

= R12 [(∆⊗ I)R]R−1
12

= R12R13R23R−1
12 . (9)

This equation also gives:

[(σ ◦∆)⊗ I]R = σ12 (∆⊗ I)R
= σ12 (R13R23)

= R23R13. (10)

Combining this with our previous result we find:

R12R13R23R−1
12 = R23R13

R12R13R23R−1
12 R12 = R23R13R12

R12R13R23 = R23R13R12. (11)

We have thus shown that quasi-triangular Hopf algebras as defined in axioms 1
and 2 indeed satisfy the Yang-Baxter equation.2

2.2 Derivation of ∆op(a) = R∆(a)R−1

In the previous section we have seen that quasi-triangular Hopf algebras produce
R-matrices that satisfy the Yang-Baxter equation. In this section, we will take
a closer look by investigating quasi-triangularity through the means of a familiar
example. We will show that equation(2) can be derived by going back to the
Yang-Baxter equation satisfied by the R-matrix of the Yang-Baxter algebra A of
the six-vertex model we have seen before.

2
For this section, I have used [1], pp. 186-187, and [2], pp. 173-175.
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We start with the following familiar Yang-Baxter equation:
�

j1,j2,j3

Rk1k2
j1j2 (u− v)Rj1k3

i1j3 (u)R
j2j3
i2i3 (v) =

�

j1,j2,j3

Rk2k3
j2j3 (v)R

k1j3
j1i3 (u)R

j1j2
i1i2 (u− v). (12)

Remembering the relation between the monodromy matrices T and the universal
R-matrices, we have the adjoint representation:

�
T

j
i (u)

�β
α
= Rjβ

iα(u) (13)

where i, j are the indices of auxiliary space so they label the elements of our six-
vertex algebra A, and α, β are the indices of the quantum space which indicate the
representation of our algebra A. Applying equation(13) to equation(12) and sur-
pressing the indices in quantum space allows us to write the Yang-Baxter equation
as:
�

j1,j2

Rk1k2
j1j2 (u− v)

�
T

j1
i1 (u)

�k3
j3

�
T

j2
i2 (v)

�j3
i3
=

�

j1,j2

�
T

k2
j2 (v)

�k3
j3

�
T

k1
j1 (u)

�j3
i3
Rj1j2

i1i2 (u− v).

(14)
The R-matrix in this RTT -equation plays an auxiliary role. This can be seen by
looking at the monodromy matrices T , which carry only auxiliary indices. We see
that in equation(14) the T ’s only carry indices with 1 and 2 just as our R-matrix.
Therefore, we can indeed say that the R-matrix plays an auxiliary role. This also
means that V1 ⊗ V2 is the auxiliary space and V3 is the quantum space.

We are interested in reversing the roles of these spaces, because we are then
able to retrieve the equation we want to find, i.e. ∆op(a) = R∆(a)R−1. In order
to do so, we use that the R-matrix of the six-vertex model satisfies the following
symmetry:

Rk1k2
j1j2 (u) = Rk2k1

j2j1 (u), (15)

or PR(u)P = R(u) where P is the permutation operator we considered before:

P : V1 ⊗ V2 → V2 ⊗ V1.

Equation(15) allows us to interchange the auxiliary and the quantum spaces which,
in a physical sense, boils down to the arbitrariness of the choice of the vertical
direction in the euclidean plane to be time.

Using equation(15) we can rewrite equation(12) to find:
�

j1,j2,j3

Rk2k1
j2j1 (u− v)Rk3j1

j3i1 (u)R
j3j2
i3i2 (v) =

�

j1,j2,j3

Rj3k1
i3j1 (u)R

k3k2
j3j2 (v)R

j2j1
i2i1 (u− v). (16)

The attentive reader will notice that we have interchanged the first two R-matrices
on the right hand side of the equal sign. We do this, because we want to rewrite
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this equation in a certain way later on. It is not clear why this is allowed. It might
be a mistake in the source text. We will however continue with this equation as
stated here such that we can find what we desire.

We find the following RTT = TTR-equation:
�

j1,j2,j3

Rk2k1
j2j1 (u− v)

�
T

k3
j3 (u)

�j1
i1

�
T

j3
i3 (v)

�j2
i2
=

�

j1,j2,j3

�
T

j3
i3 (u)

�k1
j1

�
T

k3
j3 (v)

�k2
j2
Rj2j1

i2i1 (u− v).

(17)
In this equation, the monodromy matrices T only carry indices with 3. So, whereas
we first had the space V1 ⊗ V2 auxiliary and V3 quantum, we now have that V3 is
auxiliary and V1 ⊗ V2 is quantum. We have thus succeeded in interchanging the
auxiliary and the quantum space. In our new RTT = TTR-equation(17), R plays
a quantum role.

Equation(17) can be written in a simpler form:

R(u− v)
�
T

k
j (u)⊗ T

j
i (v)

�
=

�
T

j
i (u)⊗ T

k
j (v)

�
R(u− v) (18)

where the tensor product takes place in V1 ⊗ V2 and R(u − v) ∈ End(V1 ⊗ V2),
where an endomorphism is a morphism, i.e. a structure preserving map, from a
mathematical object to itself.

Remembering that the co-product ∆ is defined as:

∆ : A → A⊗A
T

j
i (u) →

�

k

T
k
i (u)⊗ T

j
k (u),

we define the following two relations:

∆u,v

�
T

k
i (w)

�
= T

j
i (u)⊗ T

k
j (v), (19)

∆op
u,v

�
T

k
i (w)

�
= T

k
j (u)⊗ T

j
i (v), (20)

with w some dummy variable. One should realize that, as opposed to just swapping
the monodromy matrices with their variables, taking the opposed product means
reversing the monodromy matrices with respect to each other and then putting
the variables u and v in. We can now rewrite equation(18) such that we find:

∆u,v

�
T

k
i

�
= R(u− v)∆op

�
T

k
i

�
R−1(u− v). (21)

We have thus retrieved what we set out to find.
To get a better understanding of how this works, let us consider the case where

we take the braid limit, i.e. u → ±∞, of equation(18), which will bring us to the
spin-12 representation of Uq (sl(2)). We remember that the braid limit u → +∞
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was taken before in the lecture given on October 24, by Daniel Medina. The
R-matrix has the following form:

R =





a(u) 0 0 0
0 b(u) c(u) 0
0 c(u) b(u) 0
0 0 0 a(u)





with

a(u) = sinh(u+ iγ) =
1

2

�
e
u+iγ − e

−u−iγ
�
, (22)

b(u) = sinh(u) =
1

2

�
e
u − e

−u
�
, (23)

c(u) = isin(γ). (24)

Daniel showed us that the limit u → +∞ of R gives us the following result:3:

R =





q
1
2 0 0 0
0 q

− 1
2 0 0

0 q
− 1

2 (q − q
−1) q

− 1
2 0

0 0 0 q
1
2





where q = e
iγ with γ some parameter related to the anisotropy. The limit u → −∞

then gives us the inverse R−1:

R−1 =





q
− 1

2 0 0 0
0 q

1
2 −q

1
2 (q − q

−1) 0
0 0 q

1
2 0

0 0 0 q
− 1

2





Next, we need to find the braid limit for the monodromy matrices. Remem-
bering that they look like this:

T =

�
A(u) B(u)
C(u) D(u)

�

with:
A(u) =

�
a(u) 0
0 b(u)

�

3
Remember that the answer stated by Daniel was for R whereas we are considering R. There-

fore, we applied Rkl
ij = Rlk

ij to find the desired answer.
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B(u) =

�
0 0

c(u) 0

�

C(u) =

�
0 c(u)
0 0

�

and lastly:

D(u) =

�
b(u) 0
0 a(u)

�

with a(u), b(u) and c(u) as defined before. If we now take the limit u → +∞, we
find for A(u):

lim
u→+∞

A(u) = lim
u→+∞

1

2

�
e
u+iγ − e

−u−iγ 0
0 e

u − e
−u

�
(25)

=
1

2
e
u
e
iγ/2

�
e
iγ/2 0
0 e

−iγ/2

�
(26)

=
1

2
e
u
q

1
2 q

Sz
, (27)

where q = e
iγ as before, and S

z = 1
2σ

z with σ
z the familiar Pauli matrix, is the

Cartan generator in the spin-12 representation of SU(2). Similarly, for the limit
u → −∞, we find:

lim
u→−∞

A(u) = lim
u→−∞

1

2

�
e
u+iγ − e

−u−iγ 0
0 e

u − e
−u

�
(28)

= −1

2
e
−u

e
−iγ/2

�
e
−iγ/2 0
0 e

+iγ/2

�
(29)

= −1

2
e
−u

q
− 1

2 q
−Sz

. (30)

The limits of B(u), C(u), and D(u) can be found in a like fashion. Before we can
take the limit of our monodromy matrices T , we need to mention a subtlety that
we did not address for the braid limit of R as we simply stated the result. In the
process of taking the limit u → +∞ of R, we rescaled by 2e−iγ/2

e
−u, so if we now

take the limit u → +∞, we find:

T+ =

�
q
Sz

0√
q
−1 (q − q

−1)S−
q
−Sz

�

Likewise, for u → −∞, the R-matrix was rescaled by −2eiγ/2eu such that we find:

T− =

�
q
−Sz −√

q
−1 (q − q

−1)S+

0 q
Sz

�
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where q and S
z where mentioned before, and S

± = 1
2 (σ

x ± iσ
y) are the off-diagonal

generators of SU(2) in the spin-12 irreducible reptresentatation. We have that:
�
S
z
, S

±� = ±S
±
,

�
S
+
, S

−� =
q
2Sz − q

−2Sz

q − q−1
,

which are the defining relations for the quantum group Uq (sl(2)) which is some
sort of deformation of the Lie algebra sl(2) with q = e

iγ acting as a deformation
parameter.

Taking the braid limit of our co-product gives:

∆(qS
z
) = q

Sz ⊗ q
Sz
, (31)

∆(S±) = S
± ⊗ q

Sz
+ q

−Sz ⊗ S
±
, (32)

and the opposed co-product is:

∆op(qS
z
) = q

Sz ⊗ q
Sz
, (33)

∆op(S±) = S
± ⊗ q

−Sz
+ q

Sz ⊗ S
±
. (34)

Looking at the previous equations, one can see that these relations hold.
Putting all of this back into equation(21), we see that we find:

∆op(g) = R∆(g)R−1 (35)

with g ∈ {q±Sz
, S

±}. That this equation is satisfied can be seen by looking at a
specific example. We take g = q

Sz and write equation(35) as:

∆op(qS
z
)R = R∆(qS

z
). (36)

From equation(31) and equation(33), we see that ∆op(qS
z
) = ∆(qS

z
). If we now

plug in our result for R in the braid limit, we see that this indeed yields the same
on both sides as q

1
2 clearly commutes with q

Sz . The same can be done for the
other cases, such that we find that equation(35) is indeed what we find.

However, equation(21) can also be viewed in a more general sense at the level
of the quantum group Uq (sl(2)) before we construct its specific representations.
In other words, instead of perceiving R as a numerical matrix as in equation(35),
it is now understood to be an element of Uq (sl(2)) ⊗ Uq (sl(2)). Therefore, we
call the matrix R the universal R-matrix, and its existence guarantees that the
co-multiplications ∆ and ∆op of Uq (sl(2)) are equivalent at a purely algebraic
level.4

4
For this section I used [1], pp. 40, 41, 45, 47, 49, 51-55.
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2.3 Relevance
Finally, we need to address why quasi-triangular Hopf algebras are so interesting
to us. The reason was already alluded to in the previous section, namely that
quasi-triangular Hopf algebras generate solutions to the Yang-Baxter equation
naturally.

We are going to prove that there exists a solution of the Yang-Baxter equation
on every module of a braided bialgebra (A, m, η; ∆, �). We will define the
following.

Definition Let V be a vector space over a field k. A linear automorphism c of
V ⊗ V is said to be an R-matrix if it is a solution of the Yang-Baxter equation

(c⊗ IV ) (IV ⊗ c) (c⊗ IV ) = (IV ⊗ c) (c⊗ IV ) (IV ⊗ c) (37)

that holds in the automorphism group of V ⊗ V ⊗ V .

To relate this general definition to what we have seen before, we realize that the
field k in the definition is what we before called field C. Moreover, equation(37) is
a general way of writing down the Yang-Baxter equation. Equation(12) can also
be given the same shape:

(R(v)⊗ I) (I⊗R(u)) (R(u− v)⊗ I) = (I⊗R(u− v)) (R(u)⊗ I) (I⊗R(v)) .

We will use this theorem to prove that quasi-triangular bialgebras lead to solutions
of the Yang-Baxter equation. Let V and W be two A-modules. Due to the presence
of the universal R-matrix R in A⊗A, we can build a natural isomorphism c

R
V,W

of A-modules between V ⊗ W and W ⊗ V . An isomorphism is map such that
both the map and its inverse are mophisms. This isomorpism defines the flip σV,W

between the factors V and W which is defined as before:

c
R
V,W (v ⊗ w) = σV,W (R (v ⊗ w)) =

�

i

Biw ⊗ Aiv, (38)

where v ∈ V and w ∈ W and R =
�

i Ai ⊗ Bi. We use equation(7) to show that
c
R
V,W is an isomorphism with its inverse given by:

�
c
R
V,W

�−1
(w ⊗ v) = R−1 (v ⊗ w) =

�

i

γ (Ai) v ⊗ Biw =
�

i

Aiv ⊗ γ
−1 (Bi)w.

(39)
Notice here that the inverse of R is defined in the same way as we saw before in
equation(7). Now these hypotheses allow us to make the following proposition.
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Proposition For any triple (U, V,W ) of A-modules, we have the following relations:

c
R
U⊗V,W =

�
c
R
U,W ⊗ IV

� �
IU ⊗ c

R
V,W

�
,

c
R
U,V⊗W =

�
IV ⊗ c

R
U,W

� �
c
R
U,V ⊗ IW

�
,

�
c
R
V,W ⊗ IU

� �
IV ⊗ c

R
U,W

� �
c
R
U,V ⊗ IW

�
=

�
IW ⊗ c

R
U,V

� �
c
R
U,W ⊗ IV

� �
IU ⊗ c

R
V,W

�
.

The last equation is identified as the Yang-Baxter equation. These relations can be
proven by using equation(38). We have thus shown our previous assumption that
any quasi-triangular bialgebra generates solutions to the Yang-Baxter equation. 5

3 Quantum Double Construction

We will see in this chapter that the quantum double construction is a very powerful
tool to produce R-matrices that satisfy the Yang-Baxter equation. In this section,
I will follow what I have presented in class. Due to time constraints, this is not
very extensive as it will only provide the reader with a rough understanding of
how the construction works. Nevertheless, as my primary intentions were to delve
deeper into this topic, I have prepared a very elaborate evaluation of the quantum
double construction including its application to U (sl(2)) which can be found in
appendix A.

3.1 Construction of Quantum Double
To construct the quantum double D (A,A∗), we start with a finite-dimensional
algebra A and its dual A∗ were a dual is defined such that:

A : m η ∆ � γ

� � � � �
A∗ : ∆ � m η γ,

where the arrows mean that the various operations coincide. We will define the
following.

Definition We define the quantum double D (A,A∗) of the Hopf algebra A as the
bicrossed product of A and of A∗:

D (A,A∗) = A∗
�� A = A∗

�� A. (40)
5
For this section I closely followed [2], pp. 178-179. I also used [1], p. 48.
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The bicrossed product is a combination of the semidirect product � and � which
are operations often encountered in group theory. For an extensive explanation of
this bicrossed product, I refer the reader to Appendix A.

We let the set {ai} be the basis vectors for A and {ai} be those for A∗. Physi-
cally, we can interpret A as being an algebra made up of only creation operators,
and A∗ as being made up of only annihilation operators. To be able to put them
together in the quantum double construction, we need to normal order these bases.
This familiar operation consists of pulling all annihilation operators to the right of
the creation operators, such that the basis for our quantum double construction
D (A,A∗) is {aiaj}.

If we now set our universal R-matrix R as:

R =
�

i

(IA ⊗ ai)⊗
�
a
i ⊗ IA∗

�
∈ D (A,A∗)⊗D (A,A∗) , (41)

we can prove that the Hopf algebra D (A,A∗) with this R is quasi-triangular. This
means that any quantum double construction produces R-matrices that satisfy the
Yang-Baxter equation.6

6
For this section I have used [1], pp. 187-189, [2], p. 213, and I have used some knowledge

that André Henriques provided me with.
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Appendix A

A.1 Duality
Before we will go into the concept of the quantum double construction, I will first
introduce the concept of duality. Duality is needed to prove many theorems that
are stated in the following sections. Therefore, an understanding of what this
means is quite useful. We will define the following.

Definition Given bialgebras (U,m, η,∆, �) and (H,m, η,∆, �) and a bilinear form
<,> on U × H, we say that this bilinear form realizes a duality between U and
H, or that the bialgebras U and H are in duality, if we have:

< uv, x > =
�

(x)

< u, x
�
>< v, x

��
>, (42)

< u, xy > =
�

(u)

< u
�
, x >< u

��
, y >, (43)

< I, x > = �(x), (44)
< u, I > = �(u), (45)

for all u, v ∈ U and x, y ∈ H. Moreover, if U and H are Hopf algebras with
antipodes γ, then they are in duality if the underlying bialgebras are in duality
and if, moreover, we have < γ(u), x >=< u, γ(x) > for all u ∈ U and x ∈ H. 7

A.2 Quantum Double Construction
In this section we will construct something that is known as Drinfeld’s quantum
double construction. First, the concept will be introduced and we will see that the
quantum double is a braided algebra. Next, we will apply the construction on the
quantum group Uq (sl(2)).

A.2.1 Construction of Quantum Double

We start with two finite-dimensional Hopf algebras (A,m, η; ∆, �; γ, γ−1), with
the antipode γ and with an existing invertible antipode γ

−1 and X = (Aop)∗ =�
A∗

,∆∗
, �; (mop)∗ , η; (γ−1)∗ , γ∗� with A∗ = Hom(V, k) the dual of A. We then

define the quantum double D (A,A∗) of the Hopf algebra A as follows.
7
I have used [2], pp. 109, 110.
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Definition We define the quantum double D (A,A∗) of the Hopf algebra A as the
bicrossed product of A and of A∗:

D (A,A∗) = A∗
�� A = A∗

�� A. (46)

Now one will probably wonder what this bicrossed product "��" is. I will attempt
to give a short description here, for more details see [2], pp. 202-207. We let G be
a group with subgroups H and K. We assume that for any element x ∈ G there
exists a unique pair (y, z) ∈ H ×K satisfying x = yz. We can now attach to any
pair (y, z) ∈ H ×K a unique element z · y ∈ H and a unique element zy ∈ K such
that zy = (z · y)zy.

Definition We say that a pair (H,K) of groups is matched if there exists a left
action α of the group K on the set H and a right action β of the group H on the
set K, such that for all y, y� ∈ H and z, z

� ∈ K we have

(zz�)y = z
z�·y

z
�y
, (47)

z · (yy�) = (z · y)(zy · y�), (48)
z · 1 = 1, (49)
1 · y = y, (50)

where α(z, y) = z · y and β(z, y) = z
y.

We are now ready to define the bicrossed product.

Definition Let (H,K) be a matched pair of groups. Then there exists a unique
group structure on the set-theoretic product H ×K with unit 1⊗ 1 such that:

(y, z)(y�, z�) =
�
y(z · y�), zy�z�

�
(51)

for all y, y� ∈ H and z, z
� ∈ K. This structure is denoted by H �� K.

We will now return to the construction of the quantum double D (A,A∗). We
let ea and e

a be the basis vectors for A and X = (Aop)∗ respectively. We require
that:

eaeb = m
c
abec, ∆(ea) = m

a
cbe

b ⊗ e
c
, (52)

e
a
e
b = µ

ab
c e

c
, ∆(ea) = µ

bc
a eb ⊗ ec, (53)

where the "matrices" m and µ are chosen such that both A and A∗ are co-algebras.
The antipode for A is γ (ea) = γ

b
aeb and the antipode for A∗ is then found from a

matrix inversion: γ (ea) = (γ−1)ab e
b.
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Physically, we can imagine A as containing creation operaters, and A∗ as con-
taining annihilation operators. Therefore, to put them together into our quantum
double D (A,A∗) ⊂ A⊗A∗ we need to be able to normal order them. As we have
seen numerous times before, we will put the annihiliation operators to the right of
the creation operators such that the basis of D (A,A∗) is

�
eae

b
�
.

The co-product and the opposed co-product follow directly from our previous
relations:

∆
�
eae

b
�

= µ
cd
a m

b
vuece

u ⊗ ede
v
, (54)

∆op
�
eae

b
�

= µ
cd
a m

b
vuede

v ⊗ ece
u
. (55)

Unfortunately, the product is not as straighforwardly derived. We need a normal
ordering description to rewrite ebea in the basis form ece

d such that the product and
the co-product act like an algebra homomorphisms. We follow Drinfeld’s normal
ordering:

e
a
eb = m

x
kdm

a
xuµ

vy
b µ

ck
y

�
γ
−1
�u
v
ece

d (56)

where we use Einstein’s convention, i.e. we sum over all repeated indices.
If we now write the universal R-matrix of the quantum double as the element

R =
�

a

ea ⊗ I⊗ I⊗ e
a ∈ D (A,A∗)⊗D (A,A∗) (57)

then upon using the normal ordering as defined in equation(56) we find that:

R∆(x) = ∆op(x)R, ∀x ∈ D (A,A∗) . (58)

We have thus shown that the quantum double is indeed quasi-triangular.8

A.2.2 Quantum Double Construction on Uq (sl(2))

We will now apply the quantum double construction to the group Uq (sl(2)). In
the previous section, we have defined the construction for finite-dimensional Hopf
algebras, whereas Uq (sl(2)) is an infinite-dimensional Hopf algebra. Therefore, we
will not do the construction of the universal R-matrix for Uq, but for the finite-
dimensional quotient Ūq. This algebra is defined as the quotient of Uq by the
twosided ideal generated by the three elements E

d
, F

d
, K

d − 1. In fact, the finite
set

�
E

i
F

j
K

l
�
0≤i,j,l≤d−1

is a basis of the underlying vector space of Ūq. For more
on the structure of Ūq see [2], pp. 134-138. We give the algebra Ūq a Hopf algebra
structure. We want to show that Ūq is a quasi-triangular Hopf algebra.

8
For this section I have used [1], pp. 187-189, [2], pp. 202-207, 213.
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Firstly, we have seen last week in Alexandros’ presentation that we define
Uq = Uq (sl(2)) as the algebra generated by the four variables E,F,K,K

−1 with:

KK
−1 = K

−1
K = 1, KEK

−1 = q
2
E, (59)

KFK
−1 = q

−2
F, [E,F ] =

K −K
−1

q − q−1
, (60)

∆(E) = I⊗ E + E ⊗K, ∆(F ) = K
−1 ⊗ F + F ⊗ I, (61)

∆(K) = K ⊗K, ∆(K−1) = K
−1 ⊗K

−1
, (62)

�(E) = �(F ) = 0, �(K) = �(K−1) = 1, (63)
γ(E) = −EK

−1
, γ(F ) = −KF, γ(K) = K

−1
, γ(K−1) = K. (64)

We propose that the albegra Ūq has a unique Hopf algebra structure such that the
canonical projection from Uq to Ūq is a morphism of Hopf algebras. This means
that the co-multiplication, the co-unit and the antipode of Ūq are determined by
equations(61-64).

To be able to show that Ūq is a quasi-triangular Hofp algebra, we present Ūq as
the quotient of the quantum double of a Hopf algebra Bq of Ūq. Bq is defined as the
subspace of Ūq linearly generated by the set {Em

K
n}0≤m,n≤d−1. Equations(61-64)

show that Bq is a Hopf subalgebra of Ūq. Bq is generated by E and K and

KEK
−1 = q

2
E, E

d = 0, and K
d = 1. (65)

Now we will apply the quantum double construction to the Hofp algebra A =
Bq. First, X =

�
B

op
q

�∗ is determined to be a Hopf algebra. Consider the linear
forms α and η on Bq defined on the basis {Em

K
n}0≤m,n≤d−1 by:

< α,E
m
K

n
>= δm0q

2n and < η,E
m
K

n
>= δm1. (66)

We will propose that the following relations hold in the Hopf algebra X:

α
d = 1, η

d = 0, αηα
−1 = q

−2
η,

∆(α) = α⊗ α, ∆(η) = I⊗ η + η ⊗ α,

�(α) = 1, �(η) = 0,

γ(α) = α
d−1

, γ(η) = −ηα
d−1

.

On top of that, the set {ηiαi}0≤i,j≤d−1 forms a basis of X.
We can now construct the quantum double D = D (Bq). By definition, we

know that the set
�
η
i
α
j ⊗ E

k
K

l
�
0≤i,j,k,l≤d−1

is a basis of D. To make this notation
simpler, we identify an element x of A = Bq with its image I ⊗ x in D and an
element α of the dual X with its image α⊗I, such that we can write ηiαj⊗E

k
K

l =
η
i
α
j
E

k
K

l.
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To determine the multiplication of D, we need to know how the generators
α, η, E,K in D multiply. The following relations hold in D = D (Bq):

Kα = αK, Kη = q
−2
ηK,

Eα = q
−2
αE, Eη = −q

−2 (1− ηE − αK)

We have the following relations:

α
�
K

−1?K
�

= α, α (K−1
E?) = 0,

α
�
K

−1?
�

= q
−2
α, α (K−1?E) = 0,

η
�
K

−1?K
�

= q
−2
η, η (K−1

E?) = q
−2
�,

η
�
K

−1?K
�

= q
−2
η, η (K−1?E) = q

−2
α,

where g (γ−1 (a���)?a�) means the map x → g (γ−1 (a���) xa�).
Next, we will need the following theorem to show that Ūq is quasi-triangular.

Theorem Let χ : D (Bq) → Ūq be the linear map determined by

χ
�
η
i
α
j
E

k
K

l
�
=

�
q − q

−1

q2

�
q
2(i+j)k−i(i−1)

F
i
E

k
K

i+j+l (67)

where 0 ≤ i, j, k, l ≤ d− 1. Then χ is a surjective Hopf algebra morpishm.

This means that every element in χ has a corresponding element in A. We can
now prove that the Hopf algebra Ūq is quasi-triangular.

Proof We know that the Hopf algebra D = D (Bq) is quasi-triangular already. We
let RD ∈ D ⊗ D be its universal R-matrix. We define the invertible element R̄
of Ūq ⊗ Ūq by R̄ = (χ⊗ χ) (RD). As χ is a surjective homomorphism of Hopf
algebras, it is evident that R̄ satisfies equations(2-4) and is thus a quasi-triangular
algebra.

Our last step is to determine the R-matrix for Ūq. We will simply state the
answer here without any proof. The proof can be found in [2], pp. 230-235. The
universal R-matrix of Ūq is given by:

R̄ =
1

d

�

0≤i,j,k≤d−1

q − q
−1

[k]!
q
k(k−1)/2+2k(i−j)−2ij

E
k
K

i ⊗ F
k
K

j
, (68)

where in the tensor product we see the basis of the Hopf algebras A and A∗

reflected.9
9
For this section I have used [2], pp. 134-138, 214, 223-235.
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