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Abstract

In these notes we mainly present theory on abstract algebra and
how it emerges in the Yang-Baxter equation. First we review what
an associative algebra is and then introduce further structures such
as coalgebra, bialgebra and Hopf algebra. Then we discuss the con-
struction of an universal enveloping algebra and how by deforming
U [sl(2)] we obtain the quantum group Uq[sl(2)]. Finally, we discover
that the latter is actually the Braid limit of the Yang-Baxter alge-
bra and we use our algebraic knowledge to obtain the elements of its
representation.
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1 Algebras

1.1 Bialgebra and Hopf algebra

To start with, the most familiar algebraic structure is surely that of an asso-
ciative algebra.

Definition 1 An associative algebra A over a field C is a linear vector space
V equipped with
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• Multiplication m : A⊗A → A
which is

– bilinear

– associative m(1 ⊗ m) = m(m ⊗ 1) that pictorially corresponds
to the commutative diagram

A⊗A⊗A 1⊗m−−−→ A⊗Aym⊗1

ym
A⊗A m−−−→ A

• Unit η : C→ A
which satisfies the axiom m(η ⊗ 1) = m(1⊗ η) = 1.

A⊗ C
∼= A

∼= C⊗A

A⊗A

m

∧

η⊗1
<

1⊗η >

By reversing the arrows we get another structure which is called coalgebra.

Definition 1 A coalgebra A over a field C is a linear vector space V equipped
with

• Co-multiplication ∆ : A → A⊗A
which is

– bilinear

– co-associative (∆⊗ 1)∆ = (1⊗∆)∆

A ∆−−−→ A⊗Ay∆

y1⊗∆

A⊗A ∆⊗1−−−→ A

• Co-unit ε : A → C
satisfying the axiom (1⊗ ε)∆ = (ε⊗ 1)∆ = IC.

A⊗ C
∼= A

∼= C⊗A

A⊗A

∆

∨ ε⊗1

>

1⊗ε

<
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Those two algebras can be combined together to give a structureA(m, η,∆, ε)
called bialgebra. That is feasible with two compatibility conditions which
demand ∆ and ε to be homomorphisms of the algebra side of the bialgebra,
that is

∆(ab) = ∆(a)∆(b)

ε(ab) = ε(a)ε(b)

or in diagrammatic language

A⊗A m
> A ∆

> A⊗A

A⊗A⊗A⊗A

∆⊗∆

∨
1⊗τ⊗1

> A⊗A⊗A⊗A

m⊗m
∧

A ε
> C η

> A

A⊗A

m

∧

ε⊗ε

>

A⊗A

∆

∨η⊗η >

where τ is the permutation map τ(h⊗ g) = g ⊗ h.
The notion of a commutative or co-commutative bialgebra also exists.

• Commutative
m = mτ

A⊗A m
> A

A⊗A

τ

∨ m

>

• Co-commutative
∆ = τ∆

A ∆
> A⊗A

A⊗A

∆

∨ τ

>

In the spirit of adding more structure, we can construct the so-called Hopf
Algebra.

Definition 1 A Hopf algebra is a bialgebra with the additional operation of
an antipode γ : A → A
which
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• is an antihomomorphism

γ(ab) = γ(b)γ(a)

• satisfies
m(γ ⊗ 1)∆ = m(1⊗ γ)∆ = ηε

A ε
> C η

> A

A⊗A

∆

∨
1⊗γ, γ⊗1

> A⊗A

m

∧

The antipode can be seen as the algebraic analogue of the inverse in a group.
Its embedding in the bialgebra also guarantees its uniqueness.

1.2 Universal enveloping algebra

The discussion starts with a definition of a Lie algebra is in order.

Definition 1 A Lie algebra L over a field C is a linear vector space V with
the operation of Lie bracket

[ . , . ] : L⊗ L→ L

which respects three properties:

• bilinearity
[αu + βu′, v] = α[u, v] + β[u′, v] and [u, αv + βv′] = α[u, v] + β[u, v′] ,
∀u, u, v, v′ ∈ L and α, β ∈ C.

• antiymmetry
[u, v] = −[v, u], ∀u, v ∈ L.

• Jacobi identity
[u, [v, w]] + [w, [u, v]] + [v, [w, u]] = 0, ∀u, v, w ∈ L.

Obviously, a Lie algebra is not equipped with an associative operation. Nev-
ertheless, we can embed it in a larger associative algebra by indentifying the
Lie bracket of two elements with the commutator. Namely, if . denotes the
multiplication of the associative algebra then we demand that

[a, b] ≡ a.b− b.a , ∀a, b ∈ L.
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This condition should also be respected by the representations of the Lie al-
gebra and the desired associative one. Explicitly, the representation ρ should
satisfy

ρ([a, b]) = ρ(a).ρ(b)− ρ(b).ρ(a).

In order to construct this new algebra from L, we need to choose it from the
Tensor algebra of V , denoted as T (V ), that basically is the algebra of all
tensors in V .

T (V ) =
∞⊕
n=0

V ⊗n = C⊕ V ⊕ (V ⊗ V )⊕ (V ⊗ V ⊗ V )⊕ . . .

With the multiplication operation being the tensor product this algebra is
associative. An arbitrary element of T (V ) is X1⊗X2⊗· · ·⊗xr = X1X2 . . . Xr,
basically a string of letters, that is a word or monomial in the mathematical
terminilogy, of arbitrary lenght.
Now by imposing inside T (V ) that [a, b] = ab − ba yields the Universal
enveloping algebra U [L]. A bit more formally,

U(L) = T (L)/ab−ba=[a,b]

In this vector space the elements are words that can be related using the
commutator. For example, ANAGRAM = ANAGRMA+ANAGR[A,M ].
This also allowes us to “normal order” words.
More specifically, if {xi}1≤i≤n is a basis of L then, according to the Poincaré-
Birkhoff-Witt Theorem, the monomials {Xr1

1 X
r2
2 . . . Xrn

n } with ri ∈ Z+

is a basis of U [L].
A familiar example of a universal enveloping algebra is U [sl(2)]. As we know
sl(2) is generated by the Cartan subalgebra σz and its roots σ+, σ− which
are represented in the 2-dimensional module of U [sl(2)] as

σz =

(
1 0
0 −1

)
, σ+ =

(
0 1
0 0

)
, σ− =

(
0 0
1 0

)
.

What is remarkable for the enveloping algebras is that in U [L] resides an ele-
ment that commutes with any other element. It is called Casimir element
and is written

C ≡
∑
a

XaX
a.

where {Xa} constitute the basis of L where [Xa, Xb] = CabcXc with Cabc
totally antisymmetric. Xa is defined on the dual space to give the following
inner product < XaX

b >= δba.
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For our proposition that the Casimir element commutes with everything in
U [L] suffices to prove that is commutes with the basis of L. This is easily
shown,

[C,Xd] =
∑
a

[XaX
a, Xd] =

∑
a

Xa[X
a, Xd] + [Xa, Xd]X

a =

=
∑
a

CadcXaXc + CadcXcXa =

= 0

where we used the antisymmetry of structure constants and that Xa = Xa.
The existence of a Casimir element is very important for the finite dimen-
sional representation of an algebra since Schur’s lemma ensures that in an
invariant subspace it will be proportional to the unit operator. The Casimir
acts as a scalar and therefore this eigenvalue characterizes uniquely the spe-
cific module.
In physics, one often encounters the casimir element of the rotation group
SO(3) which is nothing else than the total angular momentum operator,

S2 = ~S.~S = σxσx + σyσy + σzσz = 2σ+σ− + 2σ−σ+ + σzσz

which categorizes the irreducible representation with its quantum number
s(s+ 1).
Surprisingly, it turns out that any enveloping algebra is a special case of a
Hopf algebra.

Proposition 1 Let g be a finite-dimensional Lie algebra and U [g] its uni-
versal enveloping algebra. Introducing the operations of co-multiplication,
co-unit and antipode

∆(X) = 1⊗X +X ⊗ 1, ε(X) = 0, S(X) = −X, ∀X ∈ g

U [g] turns to a Hopf algebra.

To prove this one first has to extend ∆, ε to algebra homomorphisms, while
S to an antihomomorphism and check if this is consistent with the algebra
properties. Afterwards, verifying that all the previous diagrams hold we
prove the proposition. Remarkably, U [g] is co-commutative and consequently
S2 = 11.

1Note that we changed the notation for the antipode from γ to S.

6



1.3 The quantum Uq[sl(2)]

The idea of this section is that a Hopf algebra, U [sl(2)] in specific, can be
continuously changed by introducing a deformation parameter that when set
to zero we get the algebra we start with.
U [sl(2)] constitutes a Hopf algebra according to the previous section and is
freely generated2 by {X, Y,H} obeying the commutation relations

[X, Y ] = H (1)

[H,X] = 2X (2)

[H, Y ] = −2Y (3)

Of course, we recognise X as the raising operator, Y as the lowering operator
and H as the Cartan element.
Consider now q ∈ C which is not a root of unity and the algebra freely
generated by {E,F,K,K−1} with the following rules

KK−1 = K−1K = 1 (4)

KEK−1 = q2E (5)

KFK−1 = q−2F (6)

[E,F ] =
K −K−1

q − q−1
. (7)

This algebra we will name Uq[sl(2)] and think of it as a “deformation” of
U [sl(2)]. This statement is actually valid even though Uq[sl(2)] has one more
generator. The relation is made clear by the following parametrization

q = e~

K = qH = e~H

E = X

F = Y

Plugging those in the above relations yields conditions on X, Y and H.
Obviously, equation (4) is identically satisfied. Substitution in (5) gives

e~HXe−~H = e2~X

Using the Baker-Campbell-Hausdorff formula on the left hand side and the
standard exponential expansion on the other we obtain

X + ~[H,X] +
~2

2!
[H, [H,X]] + . . . =

(
1 + 2~ +

(2~)2

2!
+

(2~)3

3!
+ . . .

)
X

2This means that the monomials of the enveloping algebra contain only the generators
of the Lie algebra.
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which is solved in all orders of ~ by equation (2). In the same way equation
(3) is satisfied by our parametrization.
Equation (7) does not have an analogue in U [sl(2)] but in the “classical”
limit ~→ 0 or q → 1 we do restore it! In particular,

[E,F ] = [X, Y ] =
e~H − e−~H

e~ − e−~
=

(
1 + ~H +O(~2H2)

)
−
(
1− ~H +O(~2H2)

)(
1 + ~ +O(~2)

)
−
(
1− ~H +O(~2)

)
=

2~H +O(~3H3)

2~ +O(~3)

where in the limit ~→ 0 we get back to equation (1).
Now it is made clear that the parameter q signifies the departure from the

“classical” algebra U [sl(2)] to a deformed or “quantum” version. The alge-
braic structure is also deformed with the Hopf algebra structure of Uq[sl(2)]
being

∆(E) = 1⊗ E + E ⊗K ε(E) = 0

∆(F ) = K−1 ⊗ F + F ⊗ 1 ε(F ) = 0

∆(K±1) = K±1 ⊗K±1 ε(K±1) = 1

and

S[E] = −EK−1

S(F ) = −KF
S(K±1) = K∓1

Note here also that the co-commutativity gives S2 6= 1 and is restored only
when q → 1.
The morale of this discussion is that starting from an enveloping algebra, we
can insert an auxiliary parameter to deform it accordingly so that it flows
continuously to another Hopf algebra which is not necessarily an enveloping
or Lie algebra. The deformed Hopf algebra is conventionally called Quan-
tum Group because it was discovered in the context of quantum integrable
models. In physics terms, deforming an algebra corresponds to breaking some
symmetry of the system by turning on an anisotropy parameter q just as it
happens with the XXX and XXZ models.

The representation theory on the quantum group Uq[sl(2)] does not devi-
ate from that of sl(2). The discussion follows the same lines apart from some
differences due to the noncommutativity of the algebra3.

3When for two variables y and x the property xy = yx is replaced by xy = q(yx) with
q ∈ C then the variables are said to live on the quantum plane and all the usual algebraic
calculations get modified.
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Since we are interested in finding finite-dimensional Uq-modules, the Cartan
subalgebra and its roots we mentioned earlier will be our basic tool. To be
specific, we need to introduce the notions of highest weight and its corre-
sponding vector.

Definition 1 Let V be a Uq-module and λ a scalar. An element u 6= 0 of V
is a highest weight vector of weight λ if

Ku = λu

Eu = 0

. This vector generates the entirety of V .

Then a most important theorem establishes our further analysis.

Theorem 1 Any non-zero n-dimensional Uq-module contains a unique high-
est weight vector u0 of heighest weight λ = εqn where ε = ±1.

Now, with the vaccuum state guaranteed one can start exploring the Verma
module built by acting with the raising operator F . With a normalization
of the eigenstates up of K, the action of the elements on them is as follows

up =
1

[p]!
F pu0, p > 0 and [p]q :=

qp − q−p

q − q−1

Kup = εqn−2pup

Eup = ε[n− p+ 1]up−1

Fup = [p]up+1

Obviously, in the basis of {u0, u1, . . . , un} of a (n + 1)-dimensional module
the operators are represented as

ρ(E) = ε


0 [n] 0 · · · 0
0 0 [n− 1] · · · 0
...

...
...

. . .
...

0 0 · · · 0 1
0 0 · · · 0 0

 , ρ(F ) =


0 0 · · · 0 0
1 0 · · · 0 0
0 [2] · · · 0
...

...
0 0 · · · [n] 0



ρ(K) = ε


qn 0 · · · 0 0
0 qn−2 · · · 0 0
...

...
. . .

...
...

0 0 · · · q−n+2 0
0 0 · · · 0 q−n

 .
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2 The Yang-Baxter algebra and the quantum

Uq[sl(2)]

With the mathematical wisdom gained from the previous sections now we
are able to recognise and translate the Yang-Baxter equation in algebraic
terms. The Yang-Baxter algebra consists of a couple (R, T ), where R is a
family of invertible matrices parametrized by a spectral parameter u while
the monodromy matrices T ij (u) are the n× n generators of the algebra. The
linking relation between those two is the so-called RTT = TTR equation

n∑
j1=1

n∑
j2=1

Rk1k2
j1j2

(u− v)T j1i1 (u)T j2i2 (v) =
n∑

j1=1

n∑
j2=1

T k2j2 (v)T k1j1 (u)Rj1j2
i1i2

(u− v) (8)

Interestingly enough, this associative algebra admits a co-multiplication and
a co-unit operation that preserve the above equation and promote it to a
bialgebra:

∆
(
T ij (u)

)
=

n∑
k=1

T kj (u)⊗ T ik(u)

ε
(
T ij (u)

)
= δij

From now on we will confine ourselves to the Yang-Baxter algebra of the
6-vertex model. The R(6v)-matrix is

R(6v) =


a 0 0 0
0 b c 0
0 c b 0
0 0 0 a


with Boltzmann weights parametrized by

a(u) = sinh(u+ iγ), b(u) = sinhu, c(u) = i sin γ

with u being the rapidity and ∆ = cos γ the anisotropy parameter.
We are also interested in the “Braid limit” representation, u → ±∞, where
the spectral parameter dependence dissappears and ones has to properly
rescale the basis. In this basis the R-matrix and the monodromy matrices
are rescaled to

R̃j1j2
i1i2

(u) = eu(i1−j1)Rj1j2
i1i2

(u)

T̃ ji (u) = eu(i−j)T ji (u).
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We would like to investigate (8) in the limit u→ ±∞, so we need to find the
limits of the monodromy matrices. Choosing the adjoint spin-1

2
representa-

tion where
(
T ji (u)

)k
l

= Rjk
il (u), we have

T 0
0 (u) =

(
a(u) 0

0 b(u)

)
T 0

1 (u) =

(
0 0
c(u) 0

)
T 1

0 (u) =

(
0 c(u)
0 0

)
T 1

1 (u) =

(
b(u) 0

0 a(u)

)
Taking the limits

lim
u→±∞

T̃ 0
0 (u) = ±1

2
e±uq±

1
2 q±S

z

lim
u→±∞

T̃ 1
1 (u) = ±1

2
e±uq±

1
2 q∓S

z

lim
u→+∞

T̃ 0
1 (u) = 0, lim

u→−∞
T̃ 0

1 (u) =
1

2
e−u(q − q−1)S−

lim
u→+∞

T̃ 1
0 (u) =

1

2
eu(q − q−1)S+, lim

u→−∞
T̃ 1

0 (u) = 0

where S±, Sz are the SU(2) generators in the spin-1
2

representation and
q = eiγ.
The entire T and R matrices at the braid limits are

T+ ≡ lim
u→+∞

2q−
1
2 e−u

(
T̃ 0

0 T̃ 1
0

T̃ 0
1 T̃ 1

1

)
=

(
qS

z
0

q−
1
2 (q − q−1)S− q−S

z

)

T− ≡ lim
u→−∞

(−2)q
1
2 eu
(
T̃ 0

0 T̃ 1
0

T̃ 0
1 T̃ 1

1

)
=

(
q−S

z −q 1
2 (q − q−1)S+

o qS
z

)

R+ ≡ lim
u→+∞

2q−
1
2 e−uR̃(u) =


q

1
2 0 0 0

0 0 q−
1
2 0

0 q−
1
2 q−

1
2 (q − q−1) 0

0 0 0 q
1
2



R− ≡ lim
u→−∞

(−2)q
1
2 euR̃(u) =


q−

1
2 0 0 0

0 q
1
2 (q − q−1) q

1
2 0

0 q
1
2 0 0

0 0 0 q−
1
2


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Now taking the various limits u→ ±∞, v → ±∞ in (8) we obtain a system
of entagled equations that luckily reduces to the following algebraic system:

[Sz, S±] = ±Sz (9)

[S+, S−] =
q2Sz − q−2Sz

q − q−1
(10)

This temptingly resembles with the Uq[sl(2)] we encountered before. Ba-
sically a small step is needed to make the indentification and that is the
following transformation from Uq[sl(2)] to (9) and (10)

q = e~

K = e2~Sz

E = S+e+~Sz

F = S−e−~S
z

which take us from (4), (5), (6), (7) to (9), (10).
We discovered that the in the braid limit the Yang-Baxter algebra coin-
cides with the quantum group Uq[sl(2)] generated by {S±, Sz}. The co-
multiplication preserves the algebraic relations as well

∆
(
qS

z)
= qS

z ⊗ qSz

∆
(
S±
)

= S± ⊗ qSz

+ q−S
z ⊗ S±.

Our result is very important because we can immediately apply our knowl-
edge of Uq[sl(2)] to find representations of the Yang-Baxter algebra in the
braid limit and q is not a root of unity. Thus, a finite-dimensional Uq is
spanned by states characterized by two numbers |j,m >. The first quan-
tum number j takes integer or half-integer values and corresponds to the
eigenvalue of the Casimir operator, which in our case is

C = X−X+ +

(
q

2Sz+1
2 − q− 2Sz+1

2

q − q−1

)2

with C|j,m >=

[
2j+1

2

]2

q

|j,m >.

The second one is the eigenvalues of H ≡ Sz with

H|j,m >= 2m|j,m >, m ∈ {−j,−j + 1, . . . , j − 1, j}.

Just as for the z-spin projection in SU(2), m can be lowered or raised with
S±,

S±|j,m >=
√

[j ∓m]q[j ±m+ 1]q|j,m± 1 > .
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Finally, the ultimate question is how to represent tensor products of repre-
sentations. It turns out that the tensor product is fully reducible to the direct
sum of smaller-dimensional irreps. For the tensor product of two spaces V j1 ,
V j2 the block-diagonalisation is the same as in ordinary SU(2)

V j1 ⊗ V j2 =

j1+j2⊕
j=|j1−j2|

V j.

Even the group theoretic 3j and 6j symbols can be used here in order to
relate the basis of the two different sides of the equation. However, things
differ due to the deformation parameter q so we are dealing with the quantum
version of 3j symbols or quantum Clebsch-Gordan coefficients

|j1,m1 > ⊗|j2,m2 >=
∑
j

[
j1 j2 j
m1 m2 m

]
q

|j,m > .

A general expression for them, that completes our discussion, is[
j1 j2 j
m1 m2 m

]
q

= δmm1+m2
∆(j1, j2, j)q

[(j1+j2−j)(j1+j2+j+1)+j1m2−j2m1]/2

√
[j1 +m1]![j1 −m1]![j2 +m2]!

√
[j2 −m2]![j −m]![j +m]![2j + 1]∑

r≥0

[
(−1)rq−r(j1+j2+j+1)

[r]![j1 + j2 − j − r]![j1 −m1 − r]![j2 +m2 − r]![j − j2 +m1 + r]![j − j1 + r −m2]!

]
where

∆(a, b, c) =

√
[−a+ b+ c]![a− b+ c]![a+ b− c]!

[a+ b+ c+ 1]!
.
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