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1 introduction

The model under consideration in these lecture notes is the six-vertex model. This model was

invented by Linus Pauling in 1935 and was intended to model water ice. Water ice has several

fascinating properties, such as that the density in water ice is lower than the density in water
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itself. Additionally, it appears that water ice has a very degenerate ground state, resulting in a

characteristically high zero-point entropy (entropy at zero temperature). Pauling used this model

to explain this zero-point entropy of water ice with surprising accuracy. His prediction of 0.806

cal·mole−1·deg−1 for the discrepancy in the zero-point entropy is in excellent agreement with the

experimental value 0.82 cal·mole−1·deg−1. The surprise lies in the fact that his model is actually

a two dimensional model (meaning a model with two spatial dimensions), whereas water ice is of

course a three dimensional system. Apparently, the structure in two dimensions lies very close to

the actual structure and studying a three dimensional version of his model will probably not give

many additional insights. Pauling based his model on just a few observations about water ice:

1. the oxygen atoms in water ice occupy the vertices on a number 4 lattice (a lattice where each

site has on average 4 nearest neighbours). This was derived from the observation that the

actual ice lattice has a tetrahedron as its building block, with an oxygen atom in the center

and hydrogen atoms close to the tips of the tetrahedron.

2. on every edge connecting two neighbouring oxygen atoms, exactly one hydrogen atom presides.

3. these hydrogen atoms can either be close to an oxygen atom (through a covalent bond) or far

away (through a hydrogen bond) (as in figure 1).

4. Water ice is electrically neutral locally, implying that around each oxygen atom, two hydrogen

atoms are close and two are far away.

The last observation is called ’the ice-rule’ in the literature. In these lecture notes, we will introduce

the model Pauling invented and show some properties of this model. We will then go on to solve

the model exactly by introducing transfer matrices, recovering some familiar equations using the

Bethe Ansatz. The references for this derivation can be found in the final section of these notes.

2 The model

The model is based on a two dimensional rectangular lattice with L vertical lines and L′ horizontal

lines, with periodic boundary conditions in both conditions. This means one must view this lattice

as being wound around a torus instead of lying on a plane. The (classic) variables of the model

live on the 2LL′ edges of this lattice and ’interact’ at the vertices, hence the name vertex model.

To model the positions of the hydrogen atom, it is sufficient to introduce a (classical) spin variable
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Figure 1: A typical situation in water ice: 5 oxygen atoms (the large dots) occupy the vertices

of a lattice and the hydrogen atoms (the small dots) are either close or far away from the central

oxygen atom.

εj ∈ {+,−}, where j labels the edge. Whenever a hydrogen atom is situated in the right part of a

horizontal edge or upper part of a vertical edge with label j, εj = + and when the atom is situated

in the left part of a horizontal edge or the lower part a vertical edge, εj = − (compare with figure

1). We can now introduce the set {+,−}2LL′ as the set of all configurations C of this lattice, even

without specifying labels for each of the edges.

To actually create a statistical mechanical model from this set-up, we must introduce a weighing

function W : {+,−}2LL′ → C, which assigns a Boltzmann weight to each of the possible configura-

tions of the lattice. We will allow W to take complex values, since for the general model it is not

necessary to restrict to real values. Also, it turns out that the hamiltonian of a one dimensional

spin chain is simply an extension of the hamiltonian in our model to complex-valued Boltzmann

weights1. Once we have defined a weighing function, we can already write down the partition

function:

Z =
∑
C

W (C), (1)

where the summation is over all configurations C ∈ {+,−}2LL′ . Of course, the partition function

is of great interest to us, because it allows us to find the correlation functions of our system, but

also thermodynamic quantities such as pressure and energy.

In principle, this W can be any function, but to match with Pauling’s observations , W has to

1For more information, see section 2.5.2 of [GRS], as given in the section References.
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obey several rules. To ensure local (nearest neighbours) interactions, we will write W as

W (C) =
∏
n

Rµνρσ(C, n), (2)

where the product runs over all vertices in the lattice and the R-matrix is simply a function

R : {+,−}2LL′ × I → C, where I is an index set to label the edges. The sub- and superscripts of

R are defined as follows (compare with figure 2): for a given configuration C and a vertex n, the

four edges joining at this vertex each have a value + or −. The four greek letters ρ, σ, µ, ν indicate

the value of the spin variable associated to the edge above, right of, left of and below of the vertex

respectively. Enforcing the ice rule on the R-matrix reduces the possible configurations around a

ρ

ν

µ σn

C

Figure 2: A vertex in the lattice with four values ρ, σ, µ, ν for the spin variables on the adjoining

edges.

vertex from the possible 24 = 16 down to 6, explaining the name six-vertex model. Notice that this

implies that the value of the R-matrix on a vertex that is not allowed by the ice rule equals zero.

The last restriction on R follows from spin reversal symmetry : in the absence of an external force,

there is no preferred direction of spin, so one would expect that reversing all the spins in a state

does not change the associated energy. This means that the six remaining vertex configurations

fall apart in three groups of two, each with a fixed value (compare with table 3). In water ice,

the values of the R-matrix for each of these three groups are equal, but we will consider a slightly

more general case, which is summarized in table 3. In the line notation used in this table, an edge

with εj = + is a filled line, while an edge with εj = − is an empty line. we will use this notation

exclusively for the rest of these notes. In particular, we choose a, b, c ∈ C and they are all nonzero.
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There is one more interesting thing to note here: spin reversal symmetry seemed to have restricted

the weights of vertices 5 and 6 to be equal, but actually, this is not a new restriction. By looking at

one horizontal line, one sees that vertex 5 allows a thick line to leave the line (to continue upwards),

while vertex 6 introduces a new thick line to the line (coming from below). Since no other vertex

has either of these properties (all other vertices either have a thick line on each horizontal edge

or on no horizontal edge), it follows by periodicity that vertices 5 and 6 have to occur in equal

numbers on each horizontal line. This means that they have to occur in equal numbers in every

possible configuration C and thus their weights also have to occur in equal numbers in W (C). We

thus only have the combination R+−
−+R

−+
+− in W (C), so assigning different values to each of them is

meaningless; only the value of their product is meaningful. We can thus without loss of generality

put them to be equal. This is the model as we will treat it in the following sections. Before we

(a) Vertex 1 with R++
++ = a (b) Vertex 3 with R−+

+− = b (c) Vertex 5 with R+−
+− = c

(d) Vertex 2 with R−−
−− = a (e) Vertex 4 with R+−

−+ = b (f) Vertex 6 with R−+
−+ = c

Figure 3: An overview of all the allowed vertex configurations and their respective weights

go into solving this model using the Bethe Ansatz and the transfer matrix method however, we

will first show that one can already have some fun with this model and calculate some interesting

features.

3 Low temperature expansion

The overall scaling of the partition function, as defined in equation 1, is irrelevant for the thermo-

dynamic properties of the system, since all thermodynamic quantities are normalized with respect

to the partition function. Additionally, under a rescaling of the three parameters, a → a
k , b → b

k ,

c→ c
k , for k ∈ C the partition function scales as

ZL,L′ →
∑
C

1

kLL′
W (C) =

1

kLL′
ZL,L′ , (3)
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(a) Part of the ground state C(+) (b) Part of the ground state C(−)

Figure 4: The two possible ground states

where now the subscripts on ZL,L′ indicate that the size of our lattice. The factor 1
kLL′

arises

because every nonzero W (C) is a product of exactly LL′ factors a, b and c. It follows that rescaling

the parameters is not of physical significance and we can freely set c = 1 by a suitable rescaling.

Consider the regime where a and b are real and write them as a = e−βEa , b = e−βEb , where β = 1
kBT

with kB the Boltzmann constant and Ea, Eb ∈ R>0. Then we can regard Ea and Eb as energies

associated with vertices of type 1 and 2 and type 3 and 4 respectively. In particular, the energy

associated to c = 1 = eβ·0 has been set to zero by the rescaling. If we fix Ea and Eb, it is true that

lim
T→0

a(T ) = 0 and of course also lim
T→0

b(T ) = 0. In this sense, the regime where a, b � 1 can be

considered the low temperature regime of this model. For the rest of this section, we will assume

a, b� 1.

Since a vertex of type 5 or 6 has zero energy, while all the other vertices have a positive energy,

a configuration built out of only vertices 5 and 6 is a ground state of this model. In our model,

there are two ground states, which are related by a global spin reversal. Part of these ground states

are shown in table 4. Now, by choosing one particular edge on the lattice, we can classify these

ground states as C(+) and C(−), according to the spin value of the chosen edge. Also, all other

configurations can be classified in two sectors, by defining

di(C) = the number of edges that are different from the ground state C(i), (4)

and dividing all configurations into two sectors: a sector S+ consisting of all configurations C such

that d+(C) < d−(C) and a sector S− consisting of all configurations C such that d+(C) > d−(C).
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Notice that since we will consider only the limit where L,L′ → ∞ the boundary between these

sectors d+(C) = d−(C) is irrelevant. Also, by spin reversal symmetry, for every state C ∈ S+ there

is a state C ′ ∈ S− such that C and C ′ are transformed into each other by a global reversal of spin

and W (C) = W (C ′). Therefore, we can write

ZL,L′ = 2
∑
C′

W (C ′), (5)

where now the summation is only over the sector S+. In the large L,L′-limit, we can expand the

partition function in powers of a and b. To find the first few orders, all one needs to do is find small

alterations of the ground state C(+) using vertices with weight a and b. Finding the expansion up

to eighth order in a and b has been an hand-in exercise; the result for the expansion is

2ZL,L′ = 1 + LL′a2b2 + LL′a2b2(a2 + b2) +
LL′(LL′ + 1)

2
a4b4 + LL′a2b2(a2 + b2). (6)

A way to find this expansion is due to the following: as we will see in the next sections, the lines in

the ground state pictures are a conserved quantity from row to row in the lattice. This means that

any allowed configuration that deviates from the ground state must be the result of shifting the flow

of one or some of the lines in the lattice (like building a dam in a river to change its flow). You can

categorize these resulting states by the number of shifts you have performed on the ground state.

By systematically going through all possible shifts, one finds the expansion as given in equation 6.

By trying to find the expansion for the partition function, it becomes clear very quickly that this

is a pretty complicated model when viewed as a thermodynamical system. It is, however, possible

to find the partition function exactly using a very neat trick. we will consider this in the following

sections. From now on, we will again consider arbitrary values for a, b and c.

4 Transfer matrices

Up until this point, we have treated the six-vertex model as a two dimensional lattice in thermody-

namic equilibrium. To solve this system, another approach will be very insightful. Consider one row

of vertical edges on the lattice. If we define a time direction on the lattice, say upwards, each other

row on the lattice can be viewed as intermediate stages in the time evolution of this first row. This

is illustrated in figure 5: the lowest row represents the spin chain at t = j, and the rows above this

one show intermediate stages at t = j + 1, t = j + 2 etc. Although this seems like a very innocent
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the spin chain at t = j

the spin chain at t = j + 1

the spin chain at t = j + 2

the spin chain at t = j + 3

Figure 5: Part of the lattice in the interpretation as the time evolution of a spin chain.

Figure 6: The new way to draw vertex 1, to make the flowing of magnon lines unambiguous.

change of view, its consequences are quite extensive, as we will show in due course. To make the

new picture of the six-vertex model complete, we must choose some conventions. Additionally, we

can give a physical interpretation to this picture: since we have chose the convention to let time

flow upward, it is clear that also the lines in the lattice (cf. figure 5) flow upward. The lines can be

viewed as the positions of some excitations of the classical spin, moving in discrete time; in analogy

with what we know about spin chains we refer to these excitations as ’magnons’.

Now, the ’magnon’ lines in this lattice have a very peculiar property: they never stop and are thus

conserved from one row of vertical edges to the next. To see this, consider the six possible vertices

again (in figure 3) and convince yourself that whenever a line flows toward a vertex, it also flows

away from the vertex. Moreover, a line always approaches a vertex from the left or from below and

always flows away from the vertex in the upper or right direction. Notice that in order to make the

flow completely unambiguous, we must enforce on vertex 1 exactly the flow types as we stated in

the previous: the line from the left continues on the line above the vertex and the line that comes

from below the vertex continues to the right of the vertex. To make this also unambiguous in the

pictures, from now on we will draw vertex 1 as pictured in figure 6.
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αj1 αj2 αj3 αjL′−1
αjL′

αi1 αi2 αi3 αiL′−1
αiL′

|αi〉

|αj〉

· · ·

Figure 7: An in-state |αi〉 and an out-state |αj〉. The transfer from the in- to the out-state is

governed by the transfer matrix T .

From this, it follows that lines can only move right or up and can thus never pass the same

row by making a full turn. By periodic boundary conditions, it follows that the number of lines is

conserved on each of the rows of vertical edges. This is a very special property of the six-vertex

model and is for example not present in the eight-vertex model, an extension of the six-vertex

model.

Until here, the transition from a two dimensional thermodynamic system to a one dimensional spin

chain with time evolution has been fairly informal. Let us try now to formalize the above: Define

a vector space V as V = Cv+ ⊕ Cv−, the complex span of two vectors v+ (which represents an

edge with a magnon inhabiting it) and v− (which represents an empty edge). We will define these

to be orthonormal. This vector space V can be viewed as a vector space of one particular vertical

edge, such that an arbitrary row state |α〉 lives in the tensor product
⊗L V and the Hilbert space

of this spin chain is simply H =
⊗L V . A basis for H is given by B =

{
⊗Li=1vpi |pi ∈ {+,−}

}
, as

the obvious extension of the basis of V . This is an orthonormal basis because we have defined v+

and v− to be orthonormal. These basis states can be written more conveniently as |p1, p2, . . . , pL〉.

Additionally, we will need an operator to govern the time evolution of the spin chain: define

T : H → H to be this operator and define its action on H by the action on the basis states of H:

let |αi〉 = |αi1 , αi2 , . . . , αiL〉 and |αj〉 = |αj1 , αj2 , . . . , αjL〉, then

〈αi|T |αj〉 =
∑

µ1,µ2,...,µL

R
αj1µ1
µLαi1

R
αj2µ2
µ1αi2

· · ·RαjLµLµL−1αiL
, (7)

where the µi ∈ {+,−} for all 1 ≤ i ≤ L.

This defines T as the operator that sums up the vertex weights of vertices between two rows of

all possible ways to connect two row states using the line conventions from the previous paragraphs
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Figure 8: An example of an in- and out-state which can be connected using the six allowed vertices

in two different ways. Here, L = 3.

(compare with figure 7). we will call it the transfer matrix for this system. Notice in particular

that the in-state |αi〉 stands left of T in the above definition, contrary to the usual way of defining

matrix elements of an operator. This will be useful in the following treatment. Notice also that it

is not always the case that there is exactly one way to connect one row state to another row state;

figure 8 shows an example where there are two ways of connecting the states. In general there may

be more options. The fact that the transfer matrix allows for the transfer of a state to another

state via a number of intermediate ones signals that this system is quantum mechanical in nature:

it transfers a state into a linear combination of all states that can be created out of this first state

using the six allowed vertices. One could see the quantum-mechanical nature also from the fact

that by defining T as in equation 7, we have actually reinterpreted the weights from our original

classical, statistical model as quantum-mechanical probabilities.

By line conservation, it follows that 〈αi|T |αj〉 = 0 whenever |αi〉 and |αj〉 do not have an equal

number of plusses (or particles). This means that T leaves subspaces of H spanned by states with a

fixed number of plusses invariant, implying we can diagonalize T on these subspaces independently.

We will use this fact greatly in the next section, so let us formalize this statement: to do so,

we will introduce yet another way of writing the basis states: we can write the basis states as

|n1, n2, . . . , nm〉, where the ni ∈ 1, 2, . . . , L satisfy n1 < n2 < . . . < nm and indicate for which i

the pi in the tensor product ⊗Li=1vpi have pi = +, so where a magnon resides on the row state. In
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particular, we will write the basis state ⊗Li=1v− as |0〉. Now we can define the subspaces of fixed

particle number as

Sm = span {|n1, n2, . . . , nm〉 |ni ∈ {1, 2, . . . , L} and n1 < n2 < . . . < nm} . (8)

These subspaces have dim(Sm) =
(
L
m

)
and we can write H = S0 ⊕ S1 ⊕ . . .⊕ SL and T (Sm) ⊆ Sm

for each m.

Why are we interested in diagonalizing T? It follows from the definition of T that the

partition function can be written as

ZL,L′ =
∑
α1

∑
α2

· · ·
∑
αL′

〈α1|T |α2〉 〈α2|T . . . |αL′〉 〈αL′ |T |α1〉 = Tr
(
TL
′
)
, (9)

by identifying that the sums run over a complete set of states of H. Since the trace of TL
′

is

completely determined by the eigenvalues of T , it follows that knowing the eigenvalues of T implies

knowing the exact form of the partition function. Since all relevant quantities (such as energy and

pressure) can be derived from the partition function, this means that knowing the eigenvalues of T

essentially solves the system. This is exactly why in the following section, we will try to solve the

eigenvalue equation for T using the Bethe Ansatz.

5 Bethe Ansatz

We want to find all the eigenvalues of T and already know that we can diagonalize T in each

subspace Sm independently. Therefore, we must simply solve the equation T |ψ〉 = Λ |ψ〉 in each

subspace Sm. Notice that an arbitrary state in Sm can be written as

|ψ〉 =
∗∑

n1,n2,...,nm

f(n1, n2, . . . , nm) |n1, n2, . . . , nm〉 , (10)

where the star above the sum indicates that the summation variables satisfy n1 < n2 < . . . < nm.

Furthermore, for each i, ni ∈ {1, 2, . . . , L} and the function f : {1, 2, . . . , L}m → C is arbitrary.

Now the equation

〈n1, n2, . . . , nm|T |ψ〉 = 〈n1, n2, . . . , nm|Λ |ψ〉 (11)

implies that, by the orthonormality of the basis states |n1, n2, . . . , nm〉
∗∑

x1,x2,...,xm

〈n1, n2, . . . , nm|Tf(x1, x2, . . . , xm) |x1, x2, . . . , xm〉 = Λf(n1, n2, . . . , nm). (12)

11



. . .

. . .

. . .

Figure 9: The two possible ways to connect the two rows of empty vertical lines.

For the function f we of course use the Bethe Ansatz, such that

f(n1, n2, . . . , nm) =
∑
p∈Sm

Ape
i
∑m
i=1 kp(i)ni , (13)

where Sm is the symmetric group and p(i) is an element p ∈ Sm acting on the integer i. Notice that

we choose f = 1 when m = 0. Finding the eigenvalue Λ now reduces to finding the matrix elements

given on the left-hand side of equation 12. We will treat a few cases explicitly before tackling the

case for general m.

5.1 S0

The simplest case is of course the eigenvalue in the subspace S0. S0 is spanned by |0〉, thus the only

matrix element left for computation is 〈0|T |0〉. This is done by finding all the ways to connect a

row of empty vertical lines to another row of empty vertical lines using the six allowed vertices.

The possibilities are given in figure 9 and show that either all the vertices have weight a or all

vertices have weight b. Thus the eigenvalue equation 12 reduces to

aL + bL = Λ, (14)

immediately giving the eigenvalue in this subspace with eigenvector |0〉.

5.2 S1

The subspace S1 still is relatively easy – We will see that the real structure of calculating the matrix

elements will emerge starting from m = 2 – but already shows the general approach for finding the

matrix elements. S1 is spanned by the L vectors |n〉, with n ∈ {1, 2, . . . , L}. The Bethe Ansatz

gives f(n) = eikn for some k ∈ C, but let us write f(n) = zn for brevity. For the matrix elements
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x

n

|x〉

|n〉

x

n

|x〉

|n〉

(a) n < x

|x〉

|n〉

|x〉

|n〉

x

n

x

n

(b) n > x

x

n

x

n
x

n

|x〉

|n〉

|x〉

|n〉

|x〉

|n〉

(c) n = x

Figure 10: The relevant cases in the subspace S1.

〈n|Tzx |x〉 from the eigenvalue equation 12, in general three cases can occur, which are displayed

in table 10. From now on, to avoid overcomplicating the pictures, we will draw them without the

”. . .” to indicate that there are actually other vertical lines in between the ones drawn; the reader

will have to infer this from the context. Notice that due to periodic boundary conditions, cases (a)

and (b) are really not different, but performing the relevant sums is easier when the cases are split

into n < x and n > x. From the pictures in table 10, we can immediately write down the complete
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eigenvalue equation and compute the sums explicitly, recognizing geometric series as we go:

Λzn =
∑
x

〈n|Tzx |x〉

= (baL−1 + abL−1)zx +
∑
x>n

c2bx−n−1aL−2−(x−n−1)zx +
∑
x<n

c2ax−n−1bL−1−x+nzx

= (baL−1 + abL−1)zx + c2aL+n−1b−n−1
L∑

x=n+1

(
bz

a

)x
+ c2an−1bL−n−1

n−1∑
x=1

(
bz

a

)x

= (baL−1 + abL−1)zx + c2aL+n−1b−n−1
L−n−1∑
x=0

(
bz

a

)x+n+1

+ c2an−1bL−n−1
(
bz

a

) n−2∑
x=0

(
bz

a

)x
= (baL−1 + abL−1)zx + c2aL−2zn+1

L−n−1∑
x=0

(
bz

a

)x
+ c2an−2bL−nz

n−2∑
x=0

(
bz

a

)x
= (baL−1 + abL−1)zx + c2aL−2zn+1 1−

(
bz
a

)L−n
1− bz

a

+ c2an−2bL−nz
1−

(
bz
a

)n−1
1− bz

a

= (baL−1 + abL−1)zx +
c2bL−1aL−1zn + 1− c2an−1bL−nzL+1 + c2an−1bL−1z − c2bL−1zn

a− bz

= aLL(z)zn + bLM(z)zn +
an−1bL−nc2(z − zL+1)

a− bz
, (15)

where we have defined the functions

L(z) =
ab+ (c2 − b2)z

a2 − abz
(16)

and

M(z) =
a2 − c2 − abz
ab− ab2z

. (17)

The right-hand side of the eigenvalue equation 15 has two terms which are nice and one that is not:

the first two terms depend on n only through the factor zn, which also occurs on the left-hand side.

The third term, however, depends on n through various factors and will thus give an n-dependent

contribution to Λ. This is very unwanted, because the translational invariance of the spin chain

should be reflected in the eigenvalues and eigenvectors, meaning Λ cannot depend on n. Therefore,

the third term must vanish. It is easy to see that this requires z = zL+1 and thus we have zL = 1.

This has L solutions: z = eik with k ∈ {2πlL |1 ≤ l ≤ L}. This defines L eigenvectors given by

|ψl〉 =
L∑
n=1

ei
2πl
L |n〉 , (18)

for 1 ≤ l ≤ L, with eigenvalue Λ = aLL(z) + bLM(z). Since dim(S1) =
(
L
1

)
= L, we have found a

complete set of eigenvectors for this subspace.
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x1 x2

n1 n2
|n1, n2〉

|x1, x2〉

Figure 11: An example of an in-state and an out-state for which 〈n1, n2|T |x1, x2〉 vanishes

5.3 S2: some structure appears

This case has all the features that occur at general m, but it is still simple enough to deal with it

quite explicitly. We will not, however, list all possibilities in a table using the graphical represen-

tation as for the S1-case: this is simply too cumbersome. We can however list the cases in another

way: the eigenvalue equation 12 for this case becomes:

∗∑
x1,x2

〈n1, n2|Tf(x1, x2) |x1, x2〉 = Λf(n1, n2), (19)

where the star indicates that x1 < x2. Notice that there are many particular cases for which the

matrix element vanishes, see for example figure 11. This means that 〈n1, n2|T |x1, x2〉 is only non-

zero when the integers n1, n2, x1, x2 satisfy either n1 ≤ x1 ≤ n2 ≤ x2 or x1 ≤ n1 ≤ x2 ≤ n2. This

is a general feature which can also be extended to the general m case. To write down the left-hand

side of 19, it is convenient and enlightening to first define some functions: let

D(x, n) =

 a
c if n = x

can−x−1 if n > x
(20)

and

E(n, x) =

 b
c if n = x

cbx−n−1 if n < x
. (21)

This defines D only for n ≥ x and E only for n ≤ x. They can be interpreted as follows: for

D(x, n) we have (compare with the upper part of table 12): when n > x, it takes into account a

line coming from the lower row onto the horizontal one (this has weight c) and going up (this has

again weight c and is visible on the left of the left picture). It then counts all the vertices of type

2 between this line and the next incoming line from below. When n = x, it recognizes that there

is no c weight coming from the vertex at the input line, no vertex of weight c is associated to the

output line and there are no vertices of type 2 between the input and output line. This leaves just

one vertex of type 1. We can follow the same line of reasoning for E: when n < x, E counts a c for
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n > x

x

n︸︷︷︸
n− x− 1 vertices of type 2

n = x

x

n

(a)

n < x

x

n ︸︷︷︸
n− x− 1 vertices of type 3

n = x

x

n

(b)

Figure 12: Pictures that show what D(x, n) (in figure (a)) and E(n, x) (in figure (b)) mean.

the vertex at the incoming line, then x− n− 1 vertices of type 3 with weight b and finally a vertex

of type 6 for the vertex where the line leaves the horizontal line. Also, when n = x, it recognizes

that there are no vertices with weight c and only one type-4 vertex with weight b. Notice that both

these functions seem to overcorrect for the number of weight-c vertices (because in the cases where

you expect two weight-c vertices, it counts only one and in the cases where you expect no weight-c

vertex, it counts −1 vertices of this type), but we will see shortly that this is just convenient way

of defining these two functions.

Using this definition, it is much easier to write down the eigenvalue equation 19, where for now

we will leave the function f unspecified:

Λf(n1, n2) =

n2∑
x1=n1

L∑
x2=n2
x2 6=x1

an1−1E(n1, x1)D(x1, n2)E(n2, x2)ca
L−x2f(x1, x2)

+

n1∑
x1=1

n2∑
x2=n1
x2 6=x1

bx1−1D(x1, n1)E(n1, x2)D(x2, n2)cb
L−n2f(x1, x2). (22)

The first summation corresponds to the case n1 ≤ x1 ≤ n2 ≤ x2, while the second summation

corresponds to x1 ≤ n1 ≤ x2 ≤ n2. Notice that the restriction x1 = x2 under the second summation

sign in each of the terms has an effect on just one term in each of them, namely the one for which
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x1 = x2 = n1 in the first summation and x1 = x2 = n2 in the second summation. Let us now take

as an ansatz for f that f(n1, n2) = A12z
n1
1 zn2

2 , which is only half of the usual Bethe Ansatz for the

case where m = 2, but it saves us from writing a lot of different terms. Additionally, let us define

the following:

Li = L(zi), Mi = M(zi), ρi = ρ(zi) =
c2zi

a2 − abzi
. (23)

Then, by computing the sums explicitly, equation 22 becomes,

ΛA12z
n1
1 zn2

2 = A12

an1
(
L1a

n2−n1zn1
1︸ ︷︷ ︸

1

+M1b
n2−n1zn2

1︸ ︷︷ ︸
2

)
·
(
L2a

L−n2zn2
2︸ ︷︷ ︸

1,2

−ρ2bL−n2zL2
)
−

aL+n1−n2bn2−n1(z1z2)
n2︸ ︷︷ ︸

2

+(ρ1a
n1 +M1b

n1zn1
1︸ ︷︷ ︸

1,2

) ·
(
L2a

n2−n1zn1
2︸ ︷︷ ︸

2

+M2b
n2−n1zn2

2

)
bL−n2︸ ︷︷ ︸

1

−

an2−n1bL−n2+n1(z1z2)
n1︸ ︷︷ ︸

2

 , (24)

where we have categorized the terms into three classes (1, 2 and without a number) for future use.

This equation is a pretty complicated mess, but using the same argumentation as in the case m = 1

we will be able to find the eigenvalue: translational invariance dictates again that the only terms

on the right-hand side that can contribute are the ones where the only n1- and n2-dependence sits

in the factor zn1
1 zn2

2 , such that it is divided out to leave us with a n1- and n2-independent Λ. This

already gives us some idea about the eigenvalue: it contains the term (aLL1L2 + bLM1M2) (which

corresponds to the terms with a 1 underneath them), as one can verify by looking carefully at the

terms in equation 24. Now, all other terms should vanish, but at the moment, they really don’t.

This is not surprising, since we know that the Ansatz we used for f is not the usual Bethe Ansatz.

Let us first write out all other terms and see if we can conclude how we should modify f to let

them vanish: The terms with a 2 under them give

A12(M1L2 − 1)((z1z2)
n2aL+n1−n2bn2−n1 + (z1z2)

n1an2−n1bL−n2+n1), (25)

while all the other terms combine to give

A12

{
an1bL−n2(L2a

n2−n1 +M2b
n2−n1zn2

2 )ρ1 −an1bL−n2(L1a
n2−n1 +M1b

n2−n1zn2
1 )ρ2z

L
2

}
.

By carefully looking at equation 25, one sees that the term

((z1z2)
n2aL+n1−n2bn2−n1 + (z1z2)

n1an2−n1bL−n2+n1) (26)
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is symmetric under exchange of z1 ↔ z2. If we therefore postulate a new Ansatz for f , namely

f(n1, n2) = A12z
n1
1 zn2

2 +A21z
n2
1 zn1

2 , it follows that the whole term in equation 25 vanishes when

A12(M1L2 − 1) +A21(M2L1 − 1) = 0. (27)

This implies the equation
A12

A21
= −s21

s12
, (28)

where we have defined

M1L2 − 1 =
−c2s12

(a− bz1)(a− bz2)
s12 = 1− 2∆z2 + z1z2 ∆ =

a2 + b2 − c2

2ab
. (29)

For those who have studied the Heisenberg XXZ-model, these equations should already look fa-

miliar. The functions s21 and s12 are exactly the scattering matrices in the XXZ-model, where ∆

is the anisotropy parameter. We will go deeper into this similarity when we consider the case for

general m.

Let us take a closer look at equation 26: if we include into this equation the terms that arise from

extending f , we see it vanishes precisely when

A12z
L
2 = A21, zL2 = −M1L2 − 1

M2L1 − 1
= −s12

s21
,

A21z
L
1 = A12, zL1 = −M2L1 − 1

M1L2 − 1
= −s21

s12
. (30)

Following the Bethe Ansatz, we must impose z1 6= z2, which implies here that if both these sets

of equations have L solutions, in total we have
(
L
2

)
possible combinations for the complex tuple

(z1, z2). Since these zj define a complex number of the form eikj , we see that these equations give

rise to
(
L
2

)
choices for the momenta k1 and k2. Also, the momenta depend only on the weights

a, b and c through the parameter ∆, which already hints that there is a larger symmetry hidden

beneath this model2.

In conclusion, we have found that the eigenvalues for the subspace S2 are the same for all the

eigenvectors and equal Λ = (aLL1L2 + bLM1M2). The eigenvectors, which are specified by the

momenta k1 and k2, follow as the solutions to the equations in 30, after plugging the value for A12
A21

as it follows from equation 28 into these equations. This can in principle be done and give rise to(
L
2

)
solutions for the eigenvectors, meaning we could construct a complete basis out of eigenvectors

for S2.

2This symmetry will be looked into in the lecture notes on the TQ-construction.
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5.4 Sm: the case for general m

With the machinery and observations from the case m = 2, it is fairly straightforward to write

down the eigenvalue equation when m is arbitrary. Firstly, it is very important to observe that the

restriction that the nonzero matrix elements 〈n1, n2, . . . , nm|T |x1, x2, . . . , xm〉 must satisfy either

n1 ≤ x1 ≤ n2 ≤ x2 ≤ . . . ≤ nm ≤ xm or x1 ≤ n1 ≤ x2 ≤ n2 ≤ . . . ≤ xm ≤ nm. This greatly

reduces the number of options we have to consider. Define for notational brevity D(xi, nj) = Dij

and E(ni, xj) = Eij . Now the eigenvalue equation follows as:

Λf(n1, n2, . . . , nm) =

n2∑
x1=n1

n3∑
x2=n2

. . .

L∑
xm=nm

an1−1 · E11D12E22D23 . . . E(m−1)(m−1)D(m−1)mEmm ·

·caL−xmf(x1, x2, . . . , xm)

+

n1∑
x1=1

n2∑
x2=n1

. . .

nm∑
xm=nm−1

bx1−1 ·D11E12D22 . . . E(m−1)mDmmcb
L−nmf(x1, x2, . . . , xm),(31)

where in the summations we impose that xi 6= xj whenever i 6= j. In principle, these summations

can be carried out exactly once again. The general procedure is still the same as in the case where

m = 2: we postulate a first Ansatz for f , namely f(n1, n2, . . . , nm = A1,2,...,mz
n1
1 zn2

2 . . . znmm . If we

define Rj(x, x
′) = Lja

x−x′zxj + Mjb
x−x′zx

′
j , we can write the first summation from the right-hand

side of equation 31 as:

A1,2,...,m

{
ax1R1x1, x2R2(x2, x3) . . . Rm−1(xm−1, xm) ·

(
Lma

L−xmznmm − ρmbL−xmzLm
)
− correction terms

}
,

(32)

where the correction terms arise to subtract terms in which x1 = x2, x2 = x3, . . . , or xn−1 = xm.

The second summation gives a similar term and is given by

A1,2,...,m

{
(ρ1a

x1 +M1b
x1zx11 ) ·R2(x1, x2)R3(x2, x3) . . . Rm(xm−1, xm)bL−xm − correction terms

}
.

(33)

Combining from these two expressions all the terms for which the nj-dependence arises purely

through the combination zn1
1 zn2

2 . . . znmm gives us again the eigenvalue, since all other terms are

excluded by translational invariance. This gives

Λ = aLL1L2 . . . Lm + bLM1M2 . . .Mm, (34)

which is a straightforward generalization of the eigenvalue in the case where m = 2. To make

the other terms cancel, we can add other terms to f to end up with the actual Bethe Ansatz
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f(n1, n2, . . . , nm) =
∑

p∈Sm Ape
i
∑m
i=1 kp(i)ni . In the end, the terms containing factors (zjzj+1)

x
j+1 or

(zjzj+1)
x
j cancel provided that

sp(j)p(j+1)Ap(1),p(2)...,p(m) + sp(j+1)p(j)Ap(1),...,p(j+1),p(j),...,p(m) = 0, (35)

for all permutations p ∈ Sm and all j ∈ {1, 2, . . . ,m− 1}. Notice that p(i) is just the permutation

p acting on the integer i. The remaining terms, which (just as in the case where m = 2) all contain

a ρj for some j, cancel only when

zLp(1) =
Ap(1),p(2),...,p(m)

Ap(2),p(3),...,p(m),p(1)
. (36)

Of course, it is not obvious why these equations should have a solution, not in the least because the

number of equations greatly outnumbers the number of variables. We can at least give a solution

to equation 35, namely

Ap(1),p(2)...,p(m) = εp
∏

1≤i≤j≤m
sp(i),p(j), (37)

where εp = 1 when p is an even permutation and εp = −1 when p is an odd permutation. We can

insert this solution into equation 36, to produce

zLp(1) = (−1)m−1
m∏
j=2

sp(j),p(1)

sp(1)p(j)
. (38)

Notice that the right-hand side of this equation is actually symmetric under exchange of any two

elements of the set {p(2), p(3), . . . , p(m)}, thus we can just greatly restrict the number of indepen-

dent equations here: it is only relevant where the element 1 gets mapped to by the permutation p.

This has exactly m possibilities, thus we are left with

zLj = (−1)m−1
m∏
i=1
i 6=j

si,j
sj,i

. (39)

This gives us m equations for the zi and can in principle be solved. From these, the coefficients Ap

can be found, such that the complete solution is found.

6 Connection to the Heisenberg XXZ-model

Although the previous derivation of the solution of the six-vertex model is interesting in itself, it

gets much more interesting when seen in another context. The Bethe Ansatz was originally used
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to solve the Heisenberg XXX- and XXZ-models. The eigenvector equation for general m for the

XXZ-model is given by

eikjL = (−1)m−1
m∏
i=1
i 6=j

si,j
sj,i

, (40)

where kj is the quasimomentum of the magnon excitations. By the identification zj = eikj , which is

completely consistent with zj being part of the Bethe Ansatz, we see that the eigenvector equations

for the XXZ- an six-vertex model completely coincide! As seen before, the anisotropy parameter

∆ from the XXZ-model also gets a new interpretation in the six-vertex model, as a fraction of the

weights a, b and c. So we see that we can use all our knowledge of using the Bethe Ansatz on the

XXZ-model to solve the six-vertex model, which is great. This was actually precisely the way that

Lieb, who first solved the six-vertex model in 1967, found the eigenvectors!

Also, the fact that the eigenvector equation only depends on the weights through ∆ is curious. We

see that for every ∆, we get a set of eigenvectors from the XXZ-model. But this means that as

long as ∆(a, b, c) = ∆(a′, b′, c′), the eigenvectors are the same. Thus the solutions of the six-vertex

model obey an extra symmetry compared to the XXZ-model. This should give rise to conserved

quantities, but we will not go into this here. This will be discussed later in the course.

7 Conclusion

We have seen that we can use the method of transfer matrices to solve the six-vertex model. This

was done using the Bethe Ansatz. It turns out that the eigenvectors of this model can actually

be found using the already known results of the XXZ-model, since the eigenvector equations for

both models are identical. This is a curious fact, not in the least because there also seems to be

a degeneracy in the solutions for the six-vertex model, because the solutions only depend on the

weights (which really are free parameters) through the combination ∆ = a2+b2−c2
2ab . This extra

symmetry hints to much deeper connections, which we will discuss later in the course.

Using the transfer matrix method turned out very conveniently in this case, but this will not be

so in a more general case: we could only use transfer matrics in this way because we could prove

line conservation. This made it possible to treat the eigenvalue problem per subspace of fixed line

number m, which greatly simplified the problem. Line conservation is unfortunately not a general

property of vertex models: for example, the eight-vertex model, a simple extension of the six-vertex
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model, does not have this property. Luckily, we can use a new method, called the TQ-construction,

to solve that model. The TQ-construction is very powerful and we will look into it in the next set

of notes.
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