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1 Introduction

These notes are written for a student seminar on quantum integrability, held at Utrecht
University during the first semester of the academic year 2013/2014. The goal of the semi-
nar was to make the journey from the Coordinate Bethe Ansatz (henceforth abbreviated by
CBA) technique applied to Heisenberg models, via the techniques of transfer matrices and
the Yang-Baxter equation to the Algebraic Bethe Ansatz technique developed in the 1980s.

The audience was a group of graduate mathematics and theoretical physics students. After
two introductory lectures by dr. G. Arutyunov and dr. A. Henriques, the lectures were
continued by the students. The first lecture was given by N. Plantz, in which he applied
the CBA technique to the Heisenberg XXX model. The second lecture is the subject of
these notes.

First a short recapitulation of the previous lecture is given and its important points and
conclusion are stressed. Following, the Heisenberg XXZ model is introduced and its physics
is discussed. Next, the CBA technique for general M will be applied to the XXZ model.
The resulting equations are written in terms of rapidities, in which one encounters them
most often. Finally, we conclude with a discussion of the existence and uniqueness of
solutions to Heisenberg models in general.

2 Recapitulation of the XXX model and the Coordinate

Bethe Ansatz

The Heisenberg XXX model is defined by introducing its Hamiltonian:

Ĥ = −J
L
∑

n=1

~Sn · ~Sn+1 = −J
L
∑

n=1

(

1

2
(S+

n S
−
n+1 + S−

n S
+
n+1) + Sz

nS
z
n+1

)

, (1)

where S± are the usual spin flip operators and we take periodic boundary conditions:
Sα
n = Sα

n+L. It was shown that the XXX Hamiltonian commutes with the total spin

operator in all directions, i.e. [Ĥ,
∑L

i S
α
i ] = 0, for α = x, y, z. As the Hamiltonian is

defined with periodic boundary conditions we have translational symmetry. Thus, the
symmetry group is given by:

G = Z/LZ× SU(2). (2)

Using only Uz(1) symmetry, the total spin in the z-direction can be written as L/2 minus
the number of spin flipsM (= # magnons) and the associated Hilbert space can be written
as a direct sum:

Sz
tot =

L

2
−M and H =

L
⊕

M=0

HM (3)
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Solving the model for M = 1 can be done by making a plane wave Ansatz:

|ψk〉 =
∑

n

f(n) |n〉 with f(n) = eikn, (4)

using the convenient notation |n〉 := S−
n |0〉, with |0〉 := |↑↑ . . . ↑〉 the ground state of the

system. This then yields an energy of

E = E0 + J(1− cos k) with E0 :=
−JL

4
. (5)

Note that the states |0〉 and |ψ(k = 0)〉 have the same energy. This degeneracy is of course
a consequence of the fact that we haven’t used the full SU(2) symmetry group in our
description. For the case M = 2 an Ansatz of plane waves turned out to be not enough,
i.e.

|ψk1,k2〉 =
∑

n2>n1

f(n1, n2) |n1, n2〉 , (6)

but the form function is now of the form

f(n1, n2) = A(k1, k2)e
i(k1n1+k2n2) +B(k1, k2)e

i(k1n2+k2n1). (7)

Note that the second term, with amplitude B, contains permutations of the two momenta.
We will later generalize this to the general M case, yielding M ! permutations of momenta
and the CBA. Demanding that this new Ansatz is an eigenstate yields a constraint on the
amplitudes:

eiθ(k1,k2) :=
A

B
= −

(

ei(k1+k2) + 1− 2eik1

ei(k1+k2) + 1− 2eik2

)

(8)

Demanding periodicity of our solutions amounts to: f(n1, n2) = f(n2, n1 + L), giving:

{

k1L = θ + 2πm1, m1 ∈ {0, . . . , L− 1}

k2L = −θ + 2πm2, m2 ∈ {0, . . . , L− 1}
(9)

and an energy of

E = J
M
∑

i=1

(1− cos ki) + E0. (10)

Solving this XXX model for M = 2 now amounts to two things:

1. Find 1/2L(L− 1) different pairs mi ∈ Z/LZ such that

2. equations (1) and (2) can be solved uniquely for ~k ∈ C
2.

If these conditions are obeyed, equation (3) can be used to find the energy of the eigenstate.
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3 Physics of the Heisenberg XXZ model

3.1 Introducing the XXZ model

The Heisenberg XXZ model differs from the XXXmodel by the introduction of an anisotropy
parameter ∆:

ĤXXZ = −J

L
∑

j=1

(

Sx
j S

x
j+1 + Sy

j S
y
j+1 +∆(Sz

jS
z
j+1 −

1

4
)

)

− 2h

L
∑

j=1

Sz
j

= −J
L
∑

j=1

(

1

2
(S+

j S
−
j+1 + S−

j S
+
j+1) + ∆(Sz

jS
z
j+1 −

1

4
)

)

− 2h
L
∑

j=1

Sz
j

Note the differences with the above Hamiltonian and the XXX Hamiltonian 1: besides the
introduction of ∆ we have shifted the energy by −E0. This will turn out to be convenient
later. Furthermore, the last term represents the magnetization of the system due to an
external magnetic field. This term comes for ’free’ in the model, as it does not make
the solving of the model more difficult. Henceforth we will omit it and indicate how the
expressions change for h 6= 0. One can easily verify that this Hamiltonian only has Uz(1)
rotational symmetry:

[ĤXXZ ,
L
∑

i=1

Sz
j ] = −J

L
∑

i,j=1

(

Sx
j [S

x
j+1, S

z
i ] + [Sx

j , S
z
i ]S

x
j+1 + Sy

j [S
y
j+1, S

z
i ] + [Sy

j , S
z
i ]S

y
j+1 + 0

)

= −Ji
L
∑

j=1

(

−Sx
j S

y
j+1 − Sy

j S
x
j+1 + Sy

j S
x
j+1 + Sx

j S
y
j+1

)

= 0,

where we used the commutation relations [Sα
n , S

β
n′ ] = iǫαβγS

γδnn′ . Taking the commutator
with the total spin in the x or y direction, one easily sees that precisely because of the
anisotropy term ∆, the commutator will not yield zero. Because we still have Uz(1) sym-
metry we may solve the XXZ Hamiltonian in a similar way as the XXX model, namely by
using the Uz(1) symmetry to write the Hilbert space as a direct sum of subspaces. In this
case we do not expect degeneracies, as we are using the full available symmetry group.
Furthermore, one can show that there exists a similarity transformation U such that:

−ĤXXZ(−∆) = UĤXXZ(∆)U−1. (11)

This unitary similarity transformation is given by (assuming even L):

U =

L/2
∏

m=1

Sz
2m ⇒ U−1 = U † =

L/2
∏

m=1

Sz
2m. (12)
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As Sz commutes with itself on every lattice site and (Sz
i )

2 = id, we immediately see that the
similarity transformation is trivially satisfied for the third term in the XXZ Hamiltonian.
For the first and second term we have to do a little effort:

L/2
∏

m=1

Sz
2m

L
∑

i=1

Sx
i S

x
i+1

L/2
∏

k=1

Sz
2k = 4

L/2
∑

i=1

Sz
2iS

x
2iS

x
2i+1S

z
2i + 4

L/2
∑

i=1

Sz
2iS

x
2i−1S

x
2iS

z
2i

= 2i

L/2
∑

i=1

Sy
2iS

x
2i+1S

z
2i − 2i

L/2
∑

i=1

Sz
2iS

x
2i−1S

y
2i

= −

L/2
∑

i=1

(

Sx
2iS

x
2i+1 + Sx

2i−1S
x
2i

)

= −
L
∑

i=1

Sx
i S

x
i+1,

where we used (Sα
i )

2 = 4id, Sα := 1/2σα, σzσx = iσy and similar relations. For the second
part in the Hamiltonian the proof is exactly the same. Thus indeed equation (11) holds.
Because we have this similarity transformation, we can conclude that the Hamiltonians
−Ĥ(−∆) and Ĥ(∆) can be diagonalized in the same basis. Of course, if they have the
same basis, the physics of both is the same. This leads us to the conclusion that the we are
only considered with the relative sign of the parameters J and ∆. By letting −∞ < ∆ <∞
we may omit the coupling constant J . Some literature includes it, some does not. In these
notes, we choose to include it.

3.2 Some limiting/special cases of the XXZ model

Let us now consider some interesting limiting cases for the anisotropy parameter in the
Heisenberg XXZ Hamiltonian.

• ∆ = 1: we obtain the XXX Hamiltonian, for which we have already written down
the Bethe Ansatz equations.

• ∆ = 0 yields the so-called XX model. Via a Jordan-Wigner transformation, one can
map this model to free fermions on a lattice. To do this, we introduce fermionic
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operators:


















































S−
j = (−1)jeiπθjc†j

S+
j = (−1)je−iπθjcj

Sz
j = 1

2 − c†jcj

θj =
∑j−1

l=1 c
†
l cl,

(13)

such that one has {cj1 , c
†
j2
} = δj1j2 and we thus indeed have sermonic creation and an-

nihilation operators. Plugging these transformation into the XX Hamiltonian yields

ĤXX =
J

2

L
∑

i=1

(

c†jcj+1 + c†j+1cj

)

. (14)

Defining the Fourier transform as

cj =
1

L

∑

k

eiknj c̃k

(and the hermitian conjugate similar) yields for the Hamiltonian:

ĤXX =
J

L

∑

k

(cos k)c̃†kc̃k, (15)

where J/L cos k =: ǫk is the single particle dispersion relation. We now recognize the
standard expression in Fourier space for a Hamiltonian describing non-interacting
free fermions on a lattice. The lowest energy excitations are the familiar particle-hole
excitations.

• J∆ → ∞ yields the well-known Ising model, of which the ground state is |↑↑ . . . ↑〉.
The lowest energy excitations have one spin flipped down, which yields a state of the
form |↑↑ . . . ↑↓↑ . . . ↑〉. Such a state is referred to as a one-magnon state. All the
other ones can be generated by a permutation of the one down spin over the lattice
sites. Note that the magnon is a boson as the ground state has total spin L/2 in the
z-direction, whereas the one-magnon state has total spin 1/2(L−1)−1/2 = L/2−1.
Thus the magnon has spin S = 1 and is a boson.

• J∆ → −∞ yields an anti-ferromagnetic Ising model, with two ground states: |↑↓↑↓ . . . 〉
and |↓↑↓↑ . . . 〉, which are called Néel states. The lowest energy excitations of these
ground states are called domain walls, which look like |↑↓↑ . . . ↑↓↓↑ . . . ↑↓〉.
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• J∆ > 0 and |∆| > 1 yields a ferromagnet along the z-direction. We can deduce this
as the overall sign of the Hamiltonian is negative, yielding a preference for alignment.
Furthermore, the fact that |∆| > 1 represents a dominance of the z-term as opposed
to the x and y terms in the Hamiltonian, so that we may neglect the latter two.

• J∆ < 0 and |∆| > 1 yields an overall plus sign of the Hamiltonian, thus favoring
misalignment. Thus we have an anti-ferromagnet along the z-direction.

• J∆ 6= 0 and |∆| < 1: now the configuarations in the XY-plane energetically dominate
those in the z-direction and depending on the overall sign of the Hamiltonian we get
(mis)alignment in the XY-plane, also called the planar regime.

4 Coordinate Bethe Ansatz for ∆ 6= 1

4.1 Reconsidering the M = 2 case

Before we consider the generalM case, let us consider theM = 2 case briefly and generalize
this later on. In the M = 2 case it is easiest to consider two separate cases, one being the
case of separated down spins and one the case of adjacent down spins. Again we use the
expression (6) and demand that ĤXXZ |ψ〉 = E2 |ψ〉. Projecting the resulting equation on
the bra 〈n1, n2| yields the equation

−
J

2
(f(n1 − 1, n2) + f(n1 + 1, n2) + f(n1, n2 − 1) + f(n1, n2 + 1)) = (E2 − 2J∆)f(n1, n2).

(16)
This equation only holds for 2 < n1 +1 < n2 < L. Following the same procedure, the case
of two adjacent down spins yields:

−
J

2
(f(n1 − 1, n2) + f(n1, n2 + 1)) = (E2 − J∆)f(n1, n2), (17)

which only holds under the condition 2 < n1+1 = n2 < L. Note that this second equation
is in fact not allowed, as we wrote the eigenstate down for n1 < n2. For now, we continue
and plug into (16) the same Ansatz as the M = 2 case for ∆ = 1. This immediately yields
the energy:

E2 = J(2∆− cos k1 − cos k2). (18)

Note the disappearing of the E0 term because of our shift of the ground state energy and
the appearance of the anisotropy parameter ∆. Now the trick is to make a second Ansatz,
constituting of extending the first Ansatz to the case n1 ≤ n2. Plugging the obtained
energy and the second Ansatz into equation (17) yields a condition of the following form

eiφ(k1,k2) :=
A

B
= −

(

ei(k1+k2) + 1− 2∆eik1

ei(k1+k2) + 1− 2∆eik2

)

, (19)
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such that our Ansatz is correct if this relation is obeyed. Note again the appearance of
the anisotropy parameter in the equation above, as opposed to equation (8). Using this to
rewrite our Ansatz we obtain:

f(n1, n2) = ei(k1n1+k2n2+
1

2
φ(k1,k2)) + ei(k1n2+k2n1−

1

2
φ(k1,k2)) (20)

Demanding periodicity via f(n1, n2) = f(n2, n1 + L) immediately yields

{

ek1L = −eiφ(k1,k2)

eik2L = −e−iφ(k1,k2)
, (21)

which are called the (exponential) Bethe Ansatz Equations. Taking the logarithm yields
the logarithmic Bethe Ansatz Equations:

{

k1L+ φ(k1, k2) = 2πI1 with I1 ∈ N+ 1
2

k2L− φ(k1, k2) = 2πI2 with I2 ∈ N+ 1
2

, (22)

Now that we understand the M = 2 case, we can easily generalize to the general M case.

4.2 The general M case

Using the analogue of the M = 2 case we can immediately write down the generalized
equation for no adjacent down spins:

−
J

2

M
∑

a=1

(f(n1, . . . , na − 1, . . . nM ) + f(n1, . . . , na + 1, . . . , nM )) = (EM−J∆M)f(n1, . . . , nM ),

(23)
which holds for na + 1 < na and for all a ∈ {1, . . .M}. In the general M case we can have
many possible other states, e.g. a block of more than two down spins adjacent and the
rest well-seperated or several blocks of down spins. However we again consider the case
where only two spins are adjacent, i.e. : there is precisely one a ∈ {1, . . .M} such that
na + 1 = na+1. This generalization of the M = 2 case is a little less straight forward and
yields

(EM − J∆)f(n1, . . . , nM ) =

−
J

2

(

M
∑

a 6=k,k+1

f(n1, . . . , na − 1, . . . , nM ) + f(n1, . . . , na + 1, . . . , nM )− 2∆f(n1, . . . , nM )

)

−
J

2
(f(n1, . . . , nk − 1, nk + 1, . . . , nM ) + f(n1, . . . , nk, nk + 2, . . . , nM )) (24)
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Now let us introduce the Bethe Ansatz for the M -particle sector:

f(n1, . . . , nM ) =
∑

P∈SM

AP exp



i
M
∑

j=1

kP(j)nj



 , (25)

where P is a permutation of SM . There are M ! of such elements. Plugging this Ansatz
into equation (23) yields the energy:

EM = J
M
∑

a=1

(∆− cos ka). (26)

which as an obvious generalizaton of the M = 2 case. We can proceed by extending the
Ansatz in the same way as we did for M = 2. We plug the Ansatz and the formula for the
energy into equation (24). Again we find a condition on the amplitudes AP . Consider two
permutations Q and P, which differ by switching the momenta associated to two neighbors
1

Q = PP(j),P(j+1)P, (27)

such that our Ansatz yields an eigenstate if and only if:

AP = AQe
iΦ(kPj

,kPj+1
)
, (28)

where Φ is the by now familiar exchange phase:

eiΦ(k,k′) :=
AP

AQ
= −

(

ei(k+k′) + 1− 2∆eik

ei(k+k′) + 1− 2∆eik′

)

. (29)

The momentum vectors k and k′ in the equation above differ by one permutation. Again
we have found factorized scattering: the sacttering of M particles (magnons) has reduced
to the pairwise scattering of two magnons! Using equations (28) and (29) one can find a
closed formula for the coefficients AP as a phase. Just as in the M = 2 case we can use
this write the Bethe Ansatz more explicitly as:

f(n1, . . . , nM ) =
∑

P∈SM

(−1)|P| exp



i
M
∑

j=1

kP(j)nj −
i

2

∑

1≤b<a≤M

Φ(kPa , kPb
)



 , (30)

where |P| represents the parity of the permutation. By invoking periodicity (f(n1, . . . , nM ) =
f(n2, . . . , nM , n1+L)) we can find the exponential Bethe Ansatz equations for the general

1Notation and argument taken from section 2.2.2. of Dynamics of Heisenberg spin chains, PhD thesis
R. Hagemans, supervisor prof. J-S Caux
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M case:

∑

P

APe
i
∑M

j=1
kPj

nj =
∑

P

APe
ikPM

Le
i
∑M

j=1
kPj

nj ⇔

∑

P

(−1)M−1AP1PM ...P1P2
e
i
∑M

j=1
kPj

nj =
∑

P

APe
ikPM

Le
i
∑M

j=1
kPj

nj ⇒

(−1)M−1AP1PM ...P1P2
= APe

ikPM
L ⇒

(−1)M−1APe
−i

∑
α Φ(kα,kβ) = APe

ikPM
L,

such that we find ∀AP the exponential Bethe Ansatz equations:

eikβL = (−1)M−1e−i
∑

α Φ(kα,kβ). (31)

Again, we can write down the logarithmic Bethe Ansatz equations by carefully taking the
complex logarithm:

Lkα +
∑

α

Φ(kα, kβ) = 2πIα where Iα =

{

∈ Z when L−M odd

∈ Z+ 1
2 when L−M even

, (32)

where the values for Ia are chosen such that the minus sign is correctly obtained after
taking the complex logarithm. (It effectively follows from the (−1)M−1 term in the expo-
nential Bethe Ansatz equations.)

Note that in this procedure we have only considered the two different cases of all spins
separated and one pair of spins adjacent. Using only these two cases, we have been able to
generalize the exponential and logarithmic Bethe Ansatz equations. In fact we should con-
sider all different possible cases and infer that the equations we found are still consistent.
We shall omit this for now.

5 Coordinate Bethe Ansatz equations in terms of rapidities

In this section we will introduce a convenient parametrization of the Bethe Ansatz equations
in terms of rapidities (denoted by λ). The Bethe Ansatz equations are most often found in
this form in the literature. However, there are a lot of different parametrizations floating
around, so the reader must take care. The convenience of the parametrization in terms
of the rapidities comes from the fact that the two-particle scattering phase becomes a
function of the difference: Φ(k, k′) ⇒ Φ(λ, λ′) = Φ(|λ−λ′|). In principle, one has to do the
parametrization for all values of ∆ to have the most general XXZ model. We shall only
consider the values of ∆ which are most interesting to us: −1 < ∆ ≤ 1.
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5.1 The case |∆| < 1

In this case we parametrize the anisotropy parameter as

∆ = cos ζ for ζ ∈ (0, 2π). (33)

Now one can introduce a rapidity λa (belonging to the associated momentum ka) implicitly
as follows:

eika =
sinh(λa + iζ/2)

sinh(λa − iζ/2)
, (34)

such that we only have to take this to the power L to obtain the right-hand side of the
exponential Bethe Ansatz equations (31). For the left-hand side we must do some more
work and plug in the above equation for the rapidity into the formula for the exchange
phase (29). By writing out the complex exponentials, plugging in the parametrization
for the anisotropy parameter ∆ in terms of complex exponentials and some tedious book-
keeping, one finds that the exchange phase becomes a function of the difference of the
rapidities only. This is just as we claimed above:

eiΦ(ka,kb) =
sinh(λa − λb + iζ)

sinh(λa − λb − iζ)
. (35)

Such that we find for the exponential Bethe Ansatz equations in terms of the rapidities:

(

sinh(λa + iζ/2)

sinh(λa − iζ/2)

)L

=
M
∏

b 6=a

sinh(λa − λb + iζ)

sinh(λa − λb − iζ)
. (36)

We can also write the logarithmic Bethe Ansatz equations in terms of rapidities. For this
we take the logarithm of equation (34):

Φ(λa, λb) = −i ln

(

−
sinh(λa − λb − iζ)

sinh(λa − λb + iζ)

)

= −i ln

(

−
sin(i(λa − λb) + ζ)

sin(i(λa − λb)− ζ)

)

= −i ln

(

tan ζ + i tanh(λa − λb)

tan ζ − i tanh(λa − λb)

)

= 2arctan

(

tanh(λa − λb)

tan ζ

)

,

where we used several triogonometic identities for functions of complex numbers, which
can be found in appendix A. Similarly, one finds for the momenta:

ka = 2arctan

(

tanhλa
tan(ζ/2)

)

, (37)
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such that we obtain for the logarithmic Bethe Ansatz equations in terms of rapidities:

Lφ1(λa)−
M
∑

b=1

φ2(λa − λb) = 2πIa, (38)

where we defined:

φn(λ) := 2 arctan

(

tanh(λ)

tan(nζ2 )

)

. (39)

5.2 The case |∆| = 1

Taking the limit ∆ → 1 ⇔ ζ → 0 in equation (36) yields a pointless expression of the
form ”1=1”. Thus we have to do better than that. We can extend our previous results be
defining the ∆ = 1 case via a limiting procedure as follows:

f(λ|∆|=1) = lim
ζ→0

f(λ|∆|<1)

ζ
, (40)

by which we mean that every function, which is a function of the anisotropy, in the case
|∆| < 1, can be extended to a function depending on ∆ = 1 by the limiting procedure
above. By plugging this into the exponential Bethe Ansatz equations written in terms of
rapidities, we get for the right-hand side:

lim
ζ→0

sinh(ζ(λa − λb + i))

sinh(ζ(λa − λb − i))
= lim

ζ→0

cosh(ζ(λa − λb + i))

cosh(ζ(λa − λb − i))

λa − λb + i

λa − λb − i
=
λa − λb + i

λa − λb − i
, (41)

where the reader should note that we plugged in λ|∆|<1 = ζλ|∆|=1 (this is legit provided
we take the limit, which we do) into the RHS of the Bethe Ansatz equations, omitted the
subscript ’|∆ = 1|’ and calculated the limit by using the rule of l’Hôpital. This leads to
the exponential Bethe Ansatz equations in terms of rapidities for the |∆| = 1 case:

(

λa + i/2

λa − i/2

)L

=
M
∏

b 6=a

λa − λb + i

λa − λb − i
(42)

We may similarly show how the argument of the characteristic function φn(λ) changes:

lim
ζ→0

tanh(λζ

tan(nζ/2)
= lim

ζ→0
(1− tanh2(λζ)) cos2

(

nζ

2

)

n

2
=
nλ

2
, (43)

such that we can define a new characteristic function:

ψn(λ) := 2 arctan

(

2λ

n

)

, (44)

with which the logarithmic Bethe Ansatz equations for the case |∆| = 1 become:

Lψ1(λa)−
M
∑

b=1

ψ2(λa − λb) = 2πIa. (45)
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6 The existence of solutions to the XXZ and the XXX model

6.1 The meaning and nature of existence of solutions

It is very hard to prove the existence and uniqueness of complete solutions to either one of
the Heisenberg models. Let us recall what we mean by solutions to these models. For the
M -magnon sector we want to find exactly L choose M different I ∈ (Z/LZ)M , such that
for every I we can find a unique ~λ ∈ C

M that solves the Bethe Ansatz equations.

Contrary to a physicist’s intuition, precisely the high symmetry of the XXX and XXZ
model makes it hard to prove that there are solutions. An analogue in atomic physics
might make this insightful. For the hydrogen atom, a lot of states are degenerate: they
carry the same energy. However, if we put on a magnetic field, the degeneracies are lifted
as the electrons with spins in certain orbits (mis)align with the magnetic field. This is the
Zeeman effect. Breaking symmetries (in the case of a magnetic field time-reversal symme-
try) thus lifts degeneracy. In our Heisenberg models one has a lot of symmetry and thus
a lot of degeneracy. Because of this high degeneracy it is hard to find a complete set of
eigenstates which can form a basis for the Hilbert space. If enough symmetry is broken, one
can prove uniqueness and existence. In fact, in the case of anisotropy, a magnetic field and
impurities along the chain length (i.e. no translation invariance) it has been proven that the
resulting model has a unique solution 2 In this light we expect that the proof of existence
and uniqueness of the XXZ model is easier than for the XXX case. This is indeed the case:
the proof for the XXX has not been given yet, whereas there are proofs for the XXZ model.

Finally we should note that physicists are able to find complete, unique solutions to both
the XXX and XXZ model for a given chain length L and given other parameters. However,
a mathematician (or maybe a very ambitious theoretical physicist) would like to see a proof
of existence and uniqueness for general parameters.

Let us now introduce some basic definitions and theorems on convexity, as we shall need
this later for a flawed proof of the existence of a real, unique solution to the logarithmic
Bethe Ansatz equations.

6.2 Some basic defintions and theorems concerning convexity

If we have a function f : R → R and we know f(x̄) = 0, then knowing that d2f/dx2 > 0
globally makes us conclude that x̄ is a global minimum of the function f . Can we generalize
to the case at hand? For this we need some mathematical theorems and definitions. Proofs
and more elaborate material of the following can be found e.g. in ”Nonlinear Programming:

2See the article by Tarasov and Varchenko: Completeness of Bethe Vectors and Difference Equations

with Regular Singular Points, Int. Math. Res., Nov 13 (1996), pp 637-669.
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Theory and Algorithms” (3rd edition) by Bazaraa, Sherali and Shetty.

Definition 1. A set S ⊂ R
n is called convex if ∀x, y ∈ S and ∀λ ∈ [0, 1] we have that

λx+ (1− λ)y ∈ S.

Examples of convex sets are intervals [a, b] ∈ R and disks in R
2. The unit circle S1 ⊂ R

2

is not convex.

Definition 2. Let S be a convex set. A function f : S → R is called a convex function if

we have ∀x, y ∈ S and ∀λ ∈ [0, 1] that f(λx+ (1− λ)y) ≤ λf(x) + (1− λ)f(y).

Definition 3. Let S be a convex set. A function f : S → R is called a strictly convex
function if we have ∀x 6= y ∈ S and ∀λ ∈ (0, 1) that f(λx+(1−λ)y) ≤ λf(x)+(1−λ)f(y).

Convex functions can be interpreted as functions for which one can draw a line from
one point on the graph of the function to another, such that the resulting line is lying
above the graph in between the two points. Of course, it is important that one can do this
for any two points. A simple convex function is f(x) = x2, whereas a simple non-convex
function is f(x) = x4 − x2.

Theorem 1. Let S be a convex set, let f : S → R be convex and let x̄ be a local minimzer

of f . Then x̄ is a global minimzer of f over S.

Proof. Suppose ∃ȳ ∈ S such that f(ȳ) < f(x̄). Define y(λ) = λx̄+ (1− λ)y and note
that y(λ) ∈ S for λ ∈ [0, 1]. We have that y(λ) → x̄ as λ→ 1. Thus we have:

f(y(λ)) = f(λx̄+ (1− λ)y)

≤ λf(x̄) + (1− λ)f(y)

< λf(x̄) + (1− λ)f(x̄) = f(x̄) ∀λ ∈ (0, 1)

But then x̄ is not a local minimizer. Proof by contradiction.

We can extend this result to an even more powerful result:

Theorem 2. Let S be a convex set, let f : S → R be strictly convex and let x̄ be a local

minimzer of f . Then x̄ is a unique global minimzer of f over S.

It is the uniqueness and existence of the above theorem we shall use in our proof for
the Heisenberg XXZ model. We only need one more definition and one more theorem:

Definition 4. A symmetric nxn real matrix M is called positive definite if zTMz > 0 for

any non-zero real column vector z.

Theorem 3. Let X be a non-empty, convex open set and let f ∈ C2(X,R). Then: f is

strictly convex ⇔ the Hessian of f is positive definite ∀x ∈ X.

Proving that a function is convex has now become easy: one just needs to prove that
it is positive definite. We shall use this in the following and combine it with the theorem
on global, unique minimizers.
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6.3 A flawed proof for the existence of solutions to the XXZ model

In this we follow the book by Korepin, Bogoliubov, Izergin. The reader is encouraged the
find the mistake himself, before it is revealed at the end of these notes. Let us start by
considering a god given so-called Yang-Yang action3 S : RM → R defined by

S(λ) =

M
∑

a=1

(

Lφ̂1(λa)− 2πIaλa

)

+
1

2

M
∑

a,b=1

φ̂2(λa − λb), (46)

where we also defined

φ̂n(λ) =

∫ λ

0
φn(µ)dµ = 2

∫ λ

0
arctan

(

tanh(µ)

tan(nζ2 )

)

dµ. (47)

If we calculate the extreme points of the Yang-Yang action we find:

∂S

∂λg
=

M
∑

a=1

(Lφ1(λa)δag − 2πIaδag) +
1

2

M
∑

a,b=1

(φ2(λa − λb)δag − φ2(λa − λg)δbg) (48)

= Lφ1(λg)−
M
∑

a=1

φ2(λg − λa)− 2πIg. (49)

Lo and behold: the extreme points of the Yang-Yang action are precisely given by the
logarithmic Bethe Ansatz equations. Might this have been the motivation to introduce
the Yang-Yang action in the first place? Surely! Note that the derivative of φ̂n(λ) yields
precisely φn(λ) because φn(0) = 0. Furthermore note that we used φn(−λ) = −φn(λ) in
the above.

Because it is in general pretty hard to prove a function is convex, we use the last the-
orem stated in the previous section to show that the Yang-Yang action is strictly convex.
Restricting ourselves to λ ∈ R

M , this means that if we have a local minimum of the Yang-
Yang action, it is a global minimum and also unique. For the following, we let v ∈ R

M be
a random column vector and we denote vα for one element of that column vector. First

3In fact, it is a function, but physicists love the call things an ’action’. In this case it is just a mapping
from R

M to R. If it were a mapping from some Banach space to the real numbers, then calling it an action
would have been appropriate, because we would be dealing with a linear functional.
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we look for the derivative of the characteristic function φn(λ):

dφn(λa)

dλa
=

d

dλa

(

2 arctan

(

tanh(λa)

tan(nζ2 )

))

= 2

(

1 +
tanh2 λa
tan2(nζ/2

)−1(
1

cosh2 λ tan(nζ/2)

)

=
2 tan(nζ/2)

cosh2 λa(tan2(nζ/2) + tanh2 λa)
.

We note that the derivative of φn(λa) is well-defined ∀λa ∈ R and ∀n ∈ N+. We can now
investigate whether the Hessian matrix of the Yang-Yang action is postive definite:

∑

δ,γ

vδvγ
∂2S

∂λγ∂λδ
= L

∑

γ

2 tan(ζ/2)v2γ

cosh2 λγ(tan2(nζ/2) + tanh2(λγ))

+
∑

δ,γ

2 tan(ζ)vδvγ

cosh2(λγ − λδ)(tan2(ζ/2) + tanh2(λγ − λδ)

= L
∑

γ

2 tan(ζ/2)v2γ

cosh2 λγ(tan2(nζ/2) + tanh2(λγ))

+
∑

δ>γ=1

2 tan(ζ)(vδ + vγ)
2

cosh2(λγ − λδ)(tan2 ζ + tanh2(λγ − λδ)
.

We note that the above expression is strictly larger than zero when both tan(ζ/2) and
tan(ζ/2) are larger than zero. If we want to have both larger than zero, we must have
ζ ∈ (0, π/2). Recall that we parametrized ∆ = cos ζ, we conclude that the Yang-Yang
Hessian matrix is positive definite for 0 < ∆ < 1. We may thus conclude that for these
values of ∆ the Yang-Yang action is strictly convex. So if we have a local minimizer, then
this is a global, unique minimum. Provided that we restrict λ ∈ R

M we thus have proven
that given a specified I ∈ (Z/LZ)M the logarithmic Bethe Ansatz equations have a global
unique minimum λ ∈ R

M .

As indicated beforehand, this proof is flawed. The point is we do not know whether
the logarithmic Bethe Ansatz equations are actually local minimizers of the Yang-Yang
action. In fact, the proof above is circular: we calculate the logarithmic Bethe Ansatz
equations and do not know whether they have solutions (the Yang-Yang action might have
no extrema!), but then we continue as if we have the solutions to the Bethe Ansatz equa-
tions and that they are minimizers (and not maximizers). A counter example would be
f(λ) = eλ. This function is strictly convex, but never attains a global minimum.
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Furthermore, one should note that if the proof above was correct, we would only have
done a small part of proving the existence of solutions to the XXZ-model. Firstly, we
assumed a given I ∈ (Z/LZ)M . Then we restricted ourselves to λ ∈ R

M , whereas the
general setting would be λ ∈ C

M . We have not touched upon the problem of completeness.
Recall that we should find L choose M different I, such that every single I has a different
solution λ ∈ C

M . Still, if the proof would have been correct, one would have been a step
closer to the existence of solutions to the XXZ model.

Finally, we note that even though the proof was flawed, the ∆ = 1 is explicitly not con-
tained in the values for which the Yang-Yang Hessian matrix is positive definite. This
confirms our previous statement that the existence of a solution to the XXX model is more
difficult than the XXZ model. One can define a similar Yang-Yang actian and do the same
computations using the characteristic ψn(λ) function (instead of φn(λ) in the ∆ = 1 case,
leading to:

∑

δ,γ

vδvγ
∂2S

∂λγ∂λδ
= L

∑

γ

2v2γ
1 + 4λ2γ

−
∑

γ 6=α

(vα − vγ)

1 + (λα − λγ)2
, (50)

which is explicitly not positive definite for arbitrary v ∈ R
M .

A non-flawed proof requires some more care. It can be found in an article by the inventors
of the Yang-Yang action 4.
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Tarasov and Varchenko, Int. Math. Res., Nov 13 (1996), pp 637-669.

8 Appendix A: Handy triogonometric formulas

We list several handy trigonometric formulas for complex arguments below 5. For x, y ∈ R:

cosh(x+ iy) = coshx cos y + i sinhx sin y (51)

sinh(x+ iy) = sinhx cos y + i coshx sin y (52)

ln

(

x+ iy

x− iy

)

= 2i arctan
(y

x

)

(53)

sin(x+ iy)

sin(x− iy)
=

tanx+ i tanh y

tanx− i tanh y
(54)

5For derivations and more explanations, see for instance:
http://www.math.ethz.ch/education/bachelor/lectures/fs2012/other/ka_itet/TrigHypFunktionen.pdf
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