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Abstract

In these lecture notes we present how to construct a direct affine
algebra, starting from a simple Lie algebra, by centrally extending its
associated loop algebra. By exploring the root space associated with
the affine algebra, the method is then compared to the axiomatic Car-
tan matrix method and the similarities are highlighted. The affine
algebra sl2 is given explicitly as an example. It is subsequently gen-
eralised to the quantum group Uqpsl2q, which is also shown to have
a Hopf algebra structure, via its universal enveloping algebra Upsl2q.
The final sections introduce the Witt algebra, its central extension, the
Virasoro algebra, and explains their relevance to conformal field the-
ories in physics. The notational conventions, definitions, figures and
explanations can be found in [1].
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1 Affine Lie algebras
We present here the construction of a general direct affine algebra. Start-
ing with a finite dimensional simple Lie algebra, we provide a method to
generalise it to its loop algebra and then to its affine algebra via a central
extension.

1.1 Lie algebra

Let g be a Lie algebra, that is a vector space defined here over C, endowed
with a binary operation r�, �s : g � g Ñ g called the Lie bracket. It satisfies
the following axioms:
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Bilinearity: rax� by, zs � arx, zs � bry, zs,

rz, ax� bys � arz, xs � brz, ys. (1)
Alternating on g:

rx, xs � 0. (2)
The Jacobi identity:

rx, ry, zss � rz, rx, yss � ry, rz, xss � 0, (3)
@a, b P C and @x, y, z P g.

A subspace I � g satisfying rg, Is � I is called an ideal in the Lie algebra
g. A simple Lie algebra is a non-abelian Lie algebra whose only ideals are 0
and itself. As an example, let us consider the simple Lie algebra sl2 which
can be presented as the set of traceless 2� 2 matrices:

sl2 �

"�
a b
c �a



| a, b, c P C

*
Then

e �

�
0 1
0 0



, f �

�
0 0
1 0



, h �

�
1 0
0 �1



. (4)

form a basis of sl2. Their Lie algebra structure is generated by the commu-
tators of these basis elements, rh, es � 2e, rh, f s � �2f and re, f s � h.

We may fix on g, an invariant symmetric bilinear form, p�|�q : g � g Ñ C,
given by px|yq � trC2pxyq, satisfying

prx, ys|zq � px|ry, zsq, (5)
px|yq � py|xq, (6)
@x, y, z P g.

As an example we may consider again sl2,

pe|eq � trpe2q � 0 � pf |fq

pe|fq � trpefq � 1 � pf |eq

ph|hq � trph2q � 2

ph|eq � trpheq � 0 � ph|fq
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1.2 Loop algebra

The loop algebra of a simple Lie algebra g is1

rg � Crt, t�1s b g, (7)

where Crt, t�1s is the associative algebra of complex Laurent polynomials in
t. A typical element of rg is a sum of terms of the form: fptqbx, where x P g
and fptq �

°
n ant

n, an P C. For example, let us consider the loop algebra of
all 2� 2 traceless matrices sl2pCq,

rsl2pCq � "�f11ptq f12ptq
f21ptq f22ptq



| fijptq P Crt, t�1s, f11ptq � f22ptq � 0

*
Each matrix is a loop in sl2 with Lie bracket

rfptq b x, gptq b ys � fptqgptq b rx, ys. (8)

In general, if g is a Lie algebra over C, then rg is a Lie algebra with the same
generators tx, y, . . .u satisfying (8), but with coefficients taken from Crt, t�1s.

1.3 Affine algebra

The direct affine algebras are of the form2

pg � rg` C{c, (9)

where g is a simple Lie algebra over C and C{c is a 1-dimensional space in
the centre of pg : rC{c, xs � 0 for all x P g, with {c the central element. The Lie
bracket is extended to pg by

rfptq b x, gptq b ys � fptqgptq b rx, ys �mδm�n,0kpx|yq{c, (10)
r{c, fptq b xs � 0, (11)

where the Killing form is defined up to a scalar multiplication by

kpx|yq � trradpxqadpyqs, (12)

with adpxq : y Ñ rx, ys the adjoint action.
1The Loop algebra rg is sometimes denoted Lg.
2The affine algebra pg is sometimes called afffine-g.
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1.4 Central extension

The second term in (10) is called a central extension. It appears to have
been added in a somewhat ad hoc fashion; how do we know that this is the
only term that we are permitted to adjoin to the algebra? Well it is indeed
true that for simple Lie algebras there exists only one non-vanishing invari-
ant, symmetric bilinear form, which is precisely the Killing form. Therefore
due to the axioms (1), that the Lie bracket must satisfy, the second term in
(10) is, up to a scalar multiplication, the unique term that we are allowed to
adjoin to the Lie bracket.

As well as being unique, the central extension is rather important from the
point of view of the representation theory. This is because the existence of a
nontrivial highest weight representation requires a central extension, and so
many of the interesting applications depend on the presence of the central
term. For many simple models, the state of highest weight is often the ground
state of a physical system, moreover it is always a vacuum state. Therefore
from a physical point of view, the central extension is important, in fact, for
the quantisation of field theories, it is quite necessary.

2 Root systems

2.1 Cartan subalgebra

Let us begin by defining a maximal abelian subalgebra (or Cartan subalgebra)3
g0, consisting of d diagonal elements of a rank-d simple Lie algebra g. In
the adjoint representation, the Lie algebra itself serves as the representation
space, so for notation convenience we will also denote this as g.4 As the
generators5 of the Cartan subalgebra can be simultaneously diagonalised, a
basis of simultaneous eigenvectors for g can be found such that each Car-
tan generator acts on each basis element as a scalar. For example in the
Cartan-Weyl basis we have H i|αy � αi|αy, pi � 1, . . . , dq6 with H i a Cartan

3The Cartan subalgebra of a Lie algebra g is often denoted by h.
4To make it clear that g is serving as the representation space, sometimes it is denoted

as V pgq or adpgq.
5Physicists and mathematicians use the word "generator" in different ways. Here the

generators of a Lie algebra are basis elements.
6Note that αi with an upper index indicates a scalar component of the root vector α.
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generator and α a root vector or simply a root.

We can therefore generate a root decomposition of the representation space
such that the basis elements are labelled by d-tuples of scalars called roots,
where each component of the root is a scalar corresponding to a particular
Cartan generator. In this respect the root space should be viewed as the
dual space, that is, the space of linear functionals. Meaning that the roots
are linear functionals on the Cartan subalgebra (via the Killing form) and
are used to define g.

2.2 Simple roots and the Cartan matrix

A root α belongs to a set of roots of g, denoted by ∆.7 In general the
roots are linearly dependent. A positive root is a root where the first nonzero
component is positive. A simple root is then a root that cannot be written as
the sum of two positive roots. There are necessarily d simple roots, and their
set, denoted at Π, provides the most convenient basis for the d-dimensional
space of roots.8 The root space has a natural scalar product p�|�q that may be
identified with a scalar product of the Lie algebra, namely the Killing form.
In the Cartan-Weyl basis we may write this as

pα|βq � kpHα, Hβq. (13)

The scalar product of the simple roots define the Cartan matrix,9

Aij �
2pαi|αjq

pαj|αjq
, αi P Π. (14)

The elements Aij are always integer valued and the diagonal elements Aii � 2.
It is not necessarily a symmetric matrix with respect to transposition, al-
though the zeros are placed symmetrically.

7Although it is not customary to include 0 in the root system ∆ for the finite dimen-
sional theory, we do so here because it is convenient for the infinite dimensional case.

8Note that the choice of a set of simple roots Π is not unique.
9Note that αi with a lower index indicates a specific simple root.
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2.3 Coroots

Before we move on to the infinite dimensional algebras, it will be useful to
first introduce the coroot, which if (α � 0) is simply a rescaling of the roots,

qα � 2α

pα|αq
. (15)

The set of coroots is

q∆ � tqα | α P ∆\t0u Y t0u. (16)

By the isomorphism provided by the Killing form, we use q∆ to select a basis of
the Cartan subalgebra called the Chevalley basis. In this basis the eigenvalue
equation for generators in g0 takes the following form

hj|αy � αiphjq|αy � pαi|qαjq|αy � 2pαi|αjq

pαj|αjq
|αy � Aij|αy. (17)

The Killing form of the generators of the Cartan subalgebra is easily trans-
lated from the Cartan-Weyl to the Chevalley basis,

kphi, hjq � pqαi|qαjq. (18)

2.4 Root space decomposition

Let the root space decomposition of the finite dimensional g be

g �
à
αP∆

gα, (19)

the root space decomposition of the loop algebra rg is then

rg �à
nPZ

à
αP∆

tn b gα. (20)

Thus a root β, of the loop algebra root system r∆, consists of the pair

β � pn, αq, β P r∆, n P Z, α P ∆. (21)

When discussing loop and affine algebras, a root α of the finite algebra is
given by (0, α), α P ∆. We may extend the scalar product p�|�q to the root
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space of the loop algebra by defining the null root as δ � p1, 0q. We require
that pδ|δq � 0 and pδ|αq � 0 for all α P r∆. Thus the scalar product is positive
semidefinite and pα � nδ|α � nδq � pα|αq for all n. Although the extension
p�|�q may seem arbitrary, it is the only one that is useful in the subsequent
theory. The set of roots of rg is then

r∆ �
¤
nPZ

p∆� nδq � ∆� Zδ. (22)

The root system of the loop algebra is a union of real roots and imaginary
roots,10 r∆ � r∆re Y r∆im, with

r∆re � tα � nδ| α � 0, n P Zu, (23)r∆im � tpnδ| n P Zu � Zδ. (24)

The root space decomposition of pg is essentially the same as for rg, the only
difference being the addition of the central element to the Cartan subalgebrarg0.

pg �à
αPp∆

pgα, (25)

pgα � rgα, if α � 0, α P p∆,pg0 � rg0 � C{c.

For each α � nδ � pn, αq P r∆re, there is a subalgebra slα�nδ2 defined as

t�n b g�α ` rt�n b g�α, tn b gαs ` tn b gα, (26)

and the (linear) generators from these root spaces are isomorphic to sl2pCq.

The loop algebra construction of the direct affine algebras yields a concise
summary of the root system in terms of the roots of the finite dimensional
Lie algebra g: one adjoint representation of g occurs at each integer multiple
of the null root δ. As an example consider the root system r∆ of rsu3 or (p∆

10The null root δ is often called an imaginary root because it has zero norm. This
however is a misnomer, as it has nothing to do with the imaginary numbers. It simply
means that for the imaginary roots the scalar product is no longer positive definite, it is
in fact zero.
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Figure 1: Root system of rsu3 or psu3 algebra. The stack of sheets continues
indefinitely both upwards and downwards.

of psu3)11, we can imagine an infinite stack of sheets with an su3 root system
drawn on each page, as shown in Figure 1. The nth page in the stack contains
the set of roots ∆psu3q � Zδ. The root nδ has multiplicity 2 on each sheet
of the root system of rsu3, corresponding to the two Cartan generators. The
same is true for psu3, with the exception that on sheet 0 the zero root has
multiplicity 3, corresponding to the addition of the central element {c, with
αp{cq � 0, to the Cartan subalgebra of su3.

2.5 Affine simple roots and the affine Cartan matrix

The next step is the identification of a basis of simple roots for the affine
algebra. This basis must contain d � 1 elements, d of which are necessarily
the finite simple roots, whereas the remaining simple root must be a linear
combination involving the null root δ. The proper choice for this extra simple

11The classical algebra Ad of rank d is often denoted as sud�1 (special unitary) when
referring to the compact real form of Ad . The name sl (special linear) refers to the
complexified su.
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Figure 2: Simple roots of psu3 algebra are α1, α2 and α0 � δ � α1 � α2.

root is α0 � δ � θ with θ defined as the highest root of the finite root system
∆,12

θ �
ḑ

i�1

ciαi, (27)

for which
°d
i�1 ci is maximum, where ci are the marks. To give an example

of what a root system looks like with the additional simple root α0, let us
again consider psu3 with the set of simple roots pΠ � tα0, α1, α2u and highest
root θ � α1 � α2, see Figure 2.
According to (27) the null root may be written as

δ �
ḑ

i�0

ciαi, (28)

with c0=1. Given a set of affine simple roots pΠ and a scalar product, we can
define the direct affine Cartan matrix as13

pAij � 2pαi|αjq

pαj|αjq
, αi P pΠ. (29)

Note that the equation pδ|αq � 0 implies that for α � 0,

2pδ|αjq

pαj|αjq
�

ḑ

i�0

ci pAij � 0. (30)

12Notice that in the affine case there is no highest root, (i.e. the adjoint representation
is not a highest weight representation).

13This matrix is also often referred to as an extended Cartan matrix.
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Since
°d
i�0 ci is non zero, the matrix pA is singular and hence its determinant

vanishes, det pA � 0.

In conclusion, we have successfully built the affine algebra pg, starting from the
finite Lie algebra g, via the Loop algebra construction. There exists however,
another complementary method which begins with the Cartan matrix and
a list of axioms which they must satisfy. By relaxing one of these axioms,
namely that det pA � 0 instead of being strictly positive, the corresponding
Lie algebras derived are precisely that of the affine algebras. Such that the
two methods are in accord with each other.

2.6 Extended affine algebra

We now come to an important problem. In the finite dimensional case
the roots are linear functionals on the Cartan subalgebra (via the Killing
form) and are used to define g. We would like the same to be true for
the affine case, such that a root of the affine algebra α � nδ acts as a lin-
ear functional on the Cartan subalgebra pg0. However if we let h P pg0 be
a Cartan generator in the Chevalley basis, it follows that δphiq � 0 since
δphjq �

°d
i�0 ciαiphjq �

°d
i�0 ci

pAij � 0 by (17), (28) and (30). Thus,
δphq � 0, and pnδ � αqphq � αphq for all n. This agrees with the previ-
ous use of roots, except that pnδ � αq define the same functional no matter
what n is. The δphq � 0 problem is that there is no operator in pg0 that
measures the value of n for the affine root pnδ � αq.

The δphq � 0 problem can be solved by augmenting the Cartan subalgebra
to include a so called grading operator L0, for which δpL0q � �1. The
immediate purpose of L0 is to measure the n value of a root pnδ � αq. We
therefore define L0 on rg to act as �t d

dt
such that the Lie bracket is

rL0, t
n b xs � �ntn b x @x P rg. (31)

L0 is a derivation on rg and extends uniquely to a derivation of pg if we im-
pose L0{c � 0. Since rL0, g

0 � C{cs � 0, we may define an extended Cartan
subalgebra,

pge,0 � rg0 ` C{c` CL0. (32)

The extended affine algebra is then
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pge � rg` C{c` CL0 � pg` CL0. (33)

The Lie bracket of the elements of pge is
rtm b x� a{c� bL0, t

n b y � c{c� dL0s

� tm�n b rx, ys �mδm�n,0kpx|yq{c� bL0pt
n b y � c{cq � dL0pt

m b x� a{cq,
� tm�n b rx, ys �mδm�n,0kpx|yq{c� nbtn b y �mdtm b x, (34)

with a, b, c, d P C.
Let x P rgnδ�α, pn, αq � 0. Then

rh, xs � αphqx, h P pge,0, x P pgnδ�α, nδ � α P p∆,
rL0, xs � �nx, L0 P pge,0, x P pgnδ�α. (35)

Thus, if we define nδ � α as a linear functional on pge,0,
pnδ � αqphq � αphq, if h P pge,0, (36)
pnδ � αqpL0q � �n, (37)

then we summarise (35) by

rh, xs � pnδ � αqphqx, x P rgnδ�α, h P pge,0. (38)

Moreover, pnδ � αq and α are distinguishable as functions on pge,0, since
δpL0q � �1, δphq � 0 for all h P pg0. (39)

3 The sl2 algebra

3.1 The loop algebra rsl2

The loop algebra of sl2 is

rsl2 � Crt, t�1s b sl2. (40)
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It is the Lie algebra of 2�2 traceless matrices with matrix elements in
Crt, t�1s, the algebra of polynomials in t and t�1.

For x P sl2 we may define xn � tn b x, n P Z, and choose the following basis

en �

�
0 tn

0 0



, hn �

�
tn 0
0 �tn



, fn �

�
0 0
tn 0



. (41)

As n varies over Z, these matrices span rsl2.
3.2 The affine algebra psl2rsl2 has a covering algebra psl2.
• It has a one dimensional centre C{c.

• rsl2 � psl2{C{c.
Similar to how the unitary groups cover the orthogonal groups, psl2 is a central
extension of rsl2. Note however that rsl2 is not a subalgebra of psl2, since it is
not closed under the Lie bracket of psl2. Furthermore the Lie algebra psl2 is
not simple. The Lie bracket of psl2 is defined by

rxm, yns � rx, yspm�nq �mδm�n,0kpx|yq{c, (42)

where xm P rsl2 and k(�|�) is the Killing form on sl2 (see (12)). In the root
space decomposition of sl2 we have e P slα1

2 , f P sl�α1
2 , and α1phq � 2 since

the set of simple roots of sl2 is Π � tα1u.

3.3 The root space decomposition of psl2
The root space decomposition of psl2 is

psl2 �à
nPZ

1à
k��1

pslkα�nδ2 , (43)

with pslα�nδ2 � Cen,psl�α�nδ2 � Cfn, (44)
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Figure 3: Roots of the psl2 algebra. All roots have multiplicity 1 except for 0,
which has multiplicity 2. Roots indicated by open circles are imaginary.

pslnδ2 �

#
Chn if n � 0,
Ch� C{c if n = 0.

(45)

The set of roots p∆ of psl2 is

p∆ � tpnδ � αq, pnδq, pnδ � αq| n P Zu,

defining the extra simple root as α0 :� δ � α1 � p1,�α1q, the entire root
system becomes

tkα0 � nα1| k, n P Z, |k � n| ¤ 1u, (46)

and is shown in Figure 3. The roots kα0 � nα1, |k � n| � 1, are called real
roots and the imaginary roots are the multiples of δ. The set of roots may
be divided up as p∆� Y t0u Y p∆�, where

p∆� � tnδ � α1| n ¡ 0u Y tnδ| n ¡ 0u Y tnδ � α1| n ¥ 0u,

and p∆� � �p∆�. The roots in the upper right-hand quadrant of Figure 3
are those in p∆�. The decomposition (43) is said to be triangular, and can
be written as
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psl2 � psl2� ` psl02 ` psl2�, psl2� � à
αP∆̂�

pslα2 , (47)

where psl02 is the Cartan subalgebra. The subalgebra psl2� is generated by two
elements (as a Lie algebra), namely e0 � e and f1 � tb f . One has a similar
situation for psl2�, with the two elements given as e�1 � t�1 b e and f0 � f .
Finally we set h1 � h, h0 � {c� h and define the direct affine Cartan matrix
as14

pAij � � 2 �2
�2 2



. (48)

The Lie algebra rsl2, can now be defined in terms of the Cartan matrix by
the following presentation on tei, fi, hiui�0,1

rhi, hjs � 0,

rhi, ejs � αjphiqej � pAjiej,
rhi, fjs � �αjphiqfj � � pAjifj,
rei, fjs � δijhi, (49)

and is completed by the constraints (called the Serre relations),

adpeiq1�Âjiej � adpeiq3ej � 0, if i � j

adpfiq1�Âjifj � adpfiq3fj � 0, if i � j (50)

where, for example if pAji � �1, then adpeiq2ej � rei, rei, ejss.

3.4 The extended psl2 algebra

The Lie algebra presented above has only a two dimensional Cartan subal-
gebra. We must therefore extend the Cartan subalgebra by including the
grading operator L0. The Lie algebra psl2 is then presented as above, but
with tei, fi, hi, L0ui�0,1 and the additional relations

14Compared to the finite Cartan matrix, (which for sl2 is just A11 � 2 ), pAij contains
an extra row and column, corresponding to the extra simple root α0.
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rL0, his � 0,

rL0, e0s � α0pL0qe0 � e0,

rL0, f0s � α0pL0qf0 � �f0,

rL0, e1s � α1pL0qe1 � 0,

rL0, f1s � α1pL0qf1 � 0, (51)

where αipL0q is constrained by the convention in (39) that δpL0q � �1.

4 Enveloping algebra Upgq

The enveloping algebra Upgq is defined to be the unique solution to the
following universal problem: Upgq is an associative unital algebra with a
linear map ρ : g Ñ Upgq such that ρprx, ysq � rρpxq, ρpyqs, and if U is
another such algebra there exists a unique unital algebra map π : Upgq Ñ U
such that the following commutative diagram is satisfied.

g
ρ
> Ug

U
_

.........
π

ρ1 >

We define the enveloping algebra Upgq of a Lie algebra g as follows. Let T pgq
be a tensor algebra defined as [2]

T pgq �
à
k

gbk, k P Z. (52)

Let Ipgq be the two-sided ideal of the tensor algebra T pgq generated by all
elements of the form xb y � y b x� rx, ys where x, y P g. We define

Upgq � T pgq{Ipgq, (53)

such that we mod out T pgq by the algebra generated by the Lie bracket.
So we can think of the universal enveloping algebra Upsl2q as all the formal
powers and linear combinations of e, f, h P sl2 modulo the standard Lie
algebra relations.
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5 The Quantum group Uqpsl2q

5.1 The Uqpsl2q algebra

Uqpsl2q is a one-parameter deformation of the universal enveloping algebra
of the Lie algebra sl2, which as we will see shortly, is also a Hopf algebra.
When the parameter q P k, with k the field, is not a root of unity, the al-
gebra Uqpsl2q has properties that parallel those of the enveloping algebra of
sl2, Upsl2q.

Let us fix an invertible element q P k different from 1 and -1, so that the
fraction 1{pq � q�1q is well-defined. We introduce some notation that will
come in handy in a later section. For any integer n, we define

rns �
qn � q�n

q � q�1
� qn�1 � qn�3 � q�n�3 � q�n�1, (54)

which satisfies

r�ns � �rns, rm� ns � qnrms � q�mrns.

Observe that if q is not a root of unity, then rns � 0 for any non-zero integer.
We define Uqpsl2q to be the unital associative algebra over a field k (which
in most cases will be C), generated by four variables E,F,K,K�1 subject to
the following relations: [3]

KK�1 � K�1K � 1,

KEK�1 � q2E,

KFK�1 � q�2F,

rE,F s �
K �K�1

q � q�1
, (55)

where q P k\t0, 1,�1u.
Although impossible with the definition given above, with another presenta-
tion we can take the limit q Ñ 1. This is the so called classical limit, in the
sense that the "quantum" group Uqpsl2q becomes the "classical" universal
enveloping algebra Upsl2q.
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5.2 Hopf Algebra structure

To facilitate the following section we need to define some of the structure
of a Hopf algebra H. A Hopf algebra H is a bialgebra H,∆, ε,m, η with a
map, S : H Ñ H (an algebra anti-homomorphism, i.e. Spxb yq � spyqSpxq
with x, y P H), called the antipode. The axioms that make a simultaneous
algebra and coalgebra into a Hopf algebra can be found in, for example [4],
as can the maps that form part of the bialgebra (algebra and coalgebra). For
our purposes however, we only need to define ∆, the coassociative map in
the coalgebra C, (an algebra homomorphism) ∆ : C Ñ C b C, called the
coproduct. The coproduct and the antipode will be relevant for the following
section.

5.3 Quantum affine sl2: Uqppsl2q

Uqppsl2q is the associated algebra over k with generators X�
i , K

�
i for i � 0, 1

subject to the following relations [5]

KiK
�1
i � K�1

i Ki � 1,

K0K1 � K1K0,

KiX
�
j � q�ÂijX�

j Ki,

rX�
i , X

�
j s � δi,j

Ki �K�1
i

q � q�1
,

pX�
i q

3
X�
j � r3spX�

i q
2
X�
j X

�
i � r3sX�

i X
�
j pX

�
i q

2
�X�

j pX
�
i q

3
� 0, (56)

see (54) for the rns notation. The above algebra is a Hopf Algebra with
coproduct

∆pKiq � Ki bKi,

∆pX�
i q � X�

i bKi � 1bX�
i ,

∆pX�
i q � X�

i b 1�K�1
i bX�

i . (57)

and antipode

SpKiq � K�1
i ,

SpX�
i q � �X�

i K
�1
i ,

SpX�
i q � KiX

�
i . (58)
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6 The Witt algebra and the Virasoro algebra
The Virasoro algebra V is an infinite dimensional Lie algebra over C. The
algebra V naturally arises in the theory of two dimensional conformal in-
variance. This is the reason why it is particularly interesting to theoretical
physicists.

Let W be an infinite dimensional vector space over C with a basis tLmu,
m P Z. The Witt algebra is the Lie algebra obtained from W by defining15

rLm, Lns � pm� nqLm�n, for all m,n P Z. (59)

The Witt algebra arises in several areas of mathematics. For example if one
considers the Lie algebra L of vector fields on the unit circle U � teiθ|θ P Ru.
Then the subalgebra Lfin, of vector fields fpθqd{dθ, for which f has a finite
Fourier expansion, has a basis Ln :� ieinθd{dθ, n P Z which satisfies (59),
such that Lfin �W.

The Virasoro algebra V is a 1-dimensional central extension of W:

0 ÝÑ C{c ÝÑ V ÝÑW ÝÑ 0. (60)

This is an example of an exact sequence. It is a sequence of objects (here
algebras and vector spaces) and morphisms, such that the image of one mor-
phism equals the kernel of the next. The zero represents the zero-dimensional
vector space. It forces the morphism between C{c and V to be an injective
homomorphism and the morpshim between V and W to be a surjective ho-
momorphism with kernel C{c.
As a vector space the Virasoro algebra is written as

V �W` C{c. (61)

The Lie bracket is given by

rLm, Lns � pm� nqLm�n �
1

12
mpm2 � 1qδm�n,0px|yq{c, (62)

r{c, Lms � 0, m, n P Z. (63)

15We may recall from section 2.6 that the definition of the grading operator was L0 �
�t d

dt , generalising this to Lm � �tm�1 d
dt gives us the full Witt algebra.
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Remark: The 1{12 factor seems to be somewhat arbitrary, since it may be
absorbed into the definition of {c. It is however, chosen in accordance with
the regularisation of the Riemann-zeta function: ζpsq �

°8
n�1 n

�s, ζp�1q �
�1{12.
From (63) we see that C{c lies in (actually equals) the centre ofV andV{C{c �
W. As was the case for the affine algebras, V is a universal central extension
of W. Evidently V is graded by Z, since from (62), rL0, Lns � �nLn:

V �
à
nPZ

Vn,

where

Vn � CL�n, if n � 0,

V0 � CL0 � C{c. (64)

From rL0, Lns � �nLn it follows that Vn is the n-eigenspace of adL0. More-
over, V carries an anti-linear anti-involution16 σ:

σLn � Ln, n P Z,
σ{c � {c. (65)

We can decompose V into three subalgebras

V � V� `V0 `V�, (66)
where

V� �
à
n¡0

Vn, V� �
à
n‘,0

Vn,

thereby obtaining a triangular decomposition of V, with σV� � V	.

The triangular decomposition is a common feature of the Heisenberg algebra,
finite simple Lie algebras (e.g. A1), Kac-Moody algebras, and as shown above
the Virasoro algebra. As a consquence these algebras have many important
properties in common, one such feature is the existence of the highest weight
representation. As touched upon before, from a physical point of view this
is very appealing, because it ensures that the system posses a vacuum state.

16Anti-linearity means σpcxq � c̄σpxq, for all x P V, c P C. Anti-involution means
σ prx, ysq � �rσx, σys for x, y P V with σ2x � x.
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6.1 Conformal field theory

The mathematical elegance and sophistication of loop and affine algebras is
evident. Moreover, the explicit realisation of their representations in models
of statistical systems and elementary particles, makes the study of these al-
gebraic structures all the more interesting. To be more specific, if we were to
investigate the properties of a conformally invariant two dimensional quan-
tum field theory. Then we shall discover that, quite remarkably, the solutions
are indeed representations of Kac-Moody algebras, of which the direct affine
algebras are a specific example.

The formalism of a conformal field theory [6] becomes quite elegant when
the two dimensional space-time manifold is coordinatized by a single com-
plex variable. The solutions to the equations of motion are then typically
holomorphic or antiholomorphic. A conformally invariant field theory is de-
fined by a Lagrangian that is invariant under conformal mappings of the
complex plane. In two dimensions, the Lie algebra of conformal transfor-
mations is infinite dimensional; it is the Virasoro algebra. Furthermore, if
the Lagrangian has an additional finite dimensional Lie symmetry, then the
quantum solution will be a representation of the affine Lie algebra.

The archetypal example of a conformal field theory is string theory, [7] where
a vibrating string sweeps out a two dimensional world-sheet in space-time. In
fact, any two dimensional theory of gravity that enjoys both diffeomorphism
and Weyl invariance will reduce to a conformally invariant theory, when the
background metric is assumed not to be dynamical, but fixed. Conformal
field theory however, has many applications outside of string theory. Most
notably in statistical physics, where it offers a description of critical phenom-
ena. This is because at the critical point, the system has scale invariance,
and in certain theories, conformal invariance is a consequence of scale and
Poincaré invariance.
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