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Abstract

Up until now we have studied algebraic bethe ansatz for 1/2-spin
models like XXX 1

2
or 6-vertex, where the various operators and R-

matrices satisfied the relation TTR = RTT . Now we will take a look
on higher spin models, where a more general relation is satisfied. This
relation reads as LLR = RLL where L stands for the Lax operator.
Furthemore we will construct the hamiltonian for the XXXs model,
where the index s denotes the higher spin.
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Figure 1: Diagramatic form of
the lax operator. The single
line stands for the 1

2
represen-

tation and the auxilary space,
while the double line stands for
the ρ representation and the
local quantume space

1 The relation LLR = RLL and the lax oper-

ators

In this section we will generalise the relation TTR = RTT . We will do this
by using the lax operators. The lax operator has the form:

L =
(
L

1
2
,ρ
)j β
i α

(1)

where 1
2

stands for the 1
2

represantation and the auxilari space, while the
ρ stands for the ρ representation and the local quantum space. In the special
case that ρ = 1

2
then L ≡ T . We can also take a look in the diagrammatic

form of the lax operator in fig.1.
By using (1) we can write down the explicit form of the relation LLR =

RLL which is:

∑
j1j2β

(
L

1
2
,ρ(µ)

)k2γ
j2β

(
L

1
2
,ρ(λ)

)k1β
j1α

(
R

1
2
, 1
2 (λ− µ)

)j1j2
i1i2

=
∑
j1j2β

(
R

1
2
, 1
2 (λ− µ)

)k1k2
j1j2

(
L

1
2
,ρ(λ)

)j1γ
i1β

(
L

1
2
,ρ(µ)

)j2β
i2α

(2)

This is not the most general relation among lax operators and R-matrices,
because the auxilary space is restricted to be 2-dimensional. However by
knowing the solutions L

1
2
,ρ1 ,L

1
2
,ρ1 of (2) we can find another R-matrix ,Rρ1,ρ2

(diagrammatic form in Fig.2),such that:
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Figure 2: Diagramatic form of
the R-matrix Rρ1,ρ2 . As we
can see both horizontal and
vertical are double lines, this
denotes that both auxilary and
quantum space are higher di-
mensional for this operator

∑
jβ1β2

(
L

1
2
,ρ1(µ)

)kγ1
jβ1

(
L

1
2
,ρ2(λ)

)jγ2
iβ2

(Rρ1,ρ2(λ− µ))β1β2α1α2

=
∑
jβ1β2

(Rρ1,ρ2(λ− µ))γ1γ2β1β2

(
L

1
2
,ρ2(λ)

)kβ2
jα2

(
L

1
2
,ρ1(µ)

)jβ1
iα1

(3)

Finally by solving (3) for every pair of solutions of (2) we get a collection
of R-matrices which satisfy the most general Yang-Baxter equation:

Rρ1ρ2
12 (λ)Rρ1ρ3

13 (λ+ µ)Rρ2ρ3
23 (µ) = Rρ2ρ3

23 (µ)Rρ1ρ3
13 (λ+ µ)Rρ1ρ2

12 (λ) (4)

We can also write all the above equations in diagrammatic form. We do this
in the fingures 3,4 and 5.

Figure 3: Diagrammatic form of (2). The intersection between single lines
goes for the R-matrix while between single lines and the double line goes for
the lax operators
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Figure 4: Diagrammatic form of (3). The intersection between double lines
goes for the R-matrix while between double lines and single line goes for the
lax operators

Figure 5: Diagrammatic form of (4). All the intersections stands for R-
matrices acting on higher dimensional auxilary and quantum spaces

We can achieve a better mathematical understanding of the above equa-
tions by considering the R-matrices as intertwiners between either 1

2
− 1

2
, 1
2
−ρ

or ρ − ρ representations. In this sense, all the above equations are nothing
more than the one basic equation which reflects the quasi-triangularity of the

affine hopf algebra Uq

(
A

(1)
1

)
projected in different representations.

2 Construction of XXXs model Hamiltonian

In this section we will try to construct the Hamiltonian for the higher spin
case of the XXX model. We will start by introducing a slightly different
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notation for the lax operators and R-matrices. In the next step we will
introduce a new monodromy and transfer matrix. In order to proceed further,
we will need to find another operator, the fundamental lax operator. Finally,
we will introduce another monodromy and transfer matrix, and we will write
down the Hamiltonian of the model.

2.1 Lax operators, monodromy and transfer matrices

As I have alreay mentioned we will use slightly different notation. We will
write the lax operators as:

L = Ln,α(λ) = λIn ⊗ Iα + i
∑
a

San ⊗ σaα =

(
λIn + iS3

n iS−n
iS+

n λIn − iS3
n

)
, (5)

where the α goes for the auxilary space and n goes for the quantum space.
Moreover, we will write the R-matrix as R = Rα1,α2 . Hence, the comutation
relation takes the form:

Ln,α1(λ)Ln,α2(µ)Rα1,α2(λ− µ) = Rα1,α2(λ− µ)Ln,α2(µ)Ln,α1(λ) (6)

By using the above lax operators we can define a new monodromy matrix

Tα(λ) =
L∏
n=1

Ln,α =

(
A(λ) B(λ)
C(λ) D(λ)

)
(7)

from which, and because the (6) is satisfied, we get the commutative family
of transfer matrices:

t(λ) = trαTα = A(λ) +D(λ) (8)

with:
[t(λ), t(µ)] = 0 (9)

2.2 Diagonalization of the transfer matrix

In this subsection we will try to diagonalize tha transfer matrix following the
same procedure we have seen in the Algebraic Bethe Ansatz. We start by
introducing our refernce state |Ω >:

|Ω〉 = |ω1〉 |ω2〉 · · · |ωL〉 (10)
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Figure 6: Diagrammatic form of Monodromy matrix. The vertical double
lines stand for the higher dimensional local quantum spaces while the single
horizontal line for the two dimensional auxilary space

where |ωi〉 is the local vacuum. |Ω〉 is a highest weight state, this means that
the creation operator S+ kills |Ω〉 . We also introduce the state with M spin
lower than the highest:

|ΨM(λ)〉 = B(λ1) · · ·B(λM) |Ω〉 (11)

Next we will act with the transfer matrix to this second state, but before we
need to check how does the various elements of the transfer matrix act on
our refernce state, hence we have that:

A(λ) |Ω〉 = (λ+ is)L (12)

D(λ) |Ω〉 = (λ− is)L (13)

C(λ) |Ω〉 = 0 (14)

We get the first two results by considering the matrix multiplication of L lax
operators. If we do the calculations we can find that each element of A and
D kills the vacuum apart from the term (λ± is)L. After that, we should find
the eigenvalue of the transfer matrix for the state |ΨM〉. In order to do this,
we will also need the commutators between A,D and B, which are:

A(λ)B(µ) =
λ− µ− i
λ− µ

B(µ)A(λ) +
i

λ− µ
B(λ)A(µ) (15)

D(λ)B(µ) =
λ− µ+ i

λ− µ
B(µ)D(λ)− i

λ− µ
B(λ)D(µ) (16)
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By using the relations (12)-(16) we can find the eigenvalue of the transfer
matrix for the state |ΨM〉 which is:

t(λ) |ΨM〉 = (λ+ is)L
M∏
j=1

λ− λj − i
λ− λj

+ (λ− is)L
M∏
j=1

λ− λj + i

λ− λj
(17)

from where we get the bethe ansatz equation:(
λk + is

λk − is

)L
=

M∏
j 6=k,j=1

λk − λj + i

λk − λj − i
(18)

2.3 The fundamental lax operator

We are not ready yet to construct the Hamiltonian, and thats because our
lax operator Ln,α acts on two essentially different spaces, the auxilary and
the quantum which are 2-d and 2s+1-d Hilbert spaces respectively. Therefor
there is no point λ for which Ln,α(λ) can act as a permutation. We can solve
this problem if we find another lax operator for which the auxilary space will
be the same as the quantum space. This operaror is called the fundamental
lax operator and we will denote it as Ln,f .

We will find this operator by using the abstract Yang-Baxter equation in
a slightly different form than before:

R12R32R31 = R31R32R12 (19)

we can achieve easily this form starting from the common yang-baxter
equation by using permutations. The next step is to apply the represantation
ρ(s1, λ)⊗ ρ(s2, µ)⊗ ρ(1

2
, 0) on the above equation. If we do this, we get:

Rs1,s2(λ− µ)R
1
2
,s2(−µ)R

1
2
,s1(−λ) = R

1
2
,s1(−λ)R

1
2
,s2(−µ)Rs1,s2(λ− µ) (20)

We can identify the R
1
2
,s with the lax operators we ’ve already had, but

the Rs1,s2 gives a new operator. In the case that s1 = s2, this is the operator
we are searching for. We will try to calculate this new operator. In orde to
make simpler the calculations we will use two different spin variables (S,T )
and so our lax operators take the for:

LT (λ) = λ+ i(T, σ) (21)

LS(λ) = λ+ i(S, σ) (22)
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We will also search for Rs1,s2 in the form:

Rs1,s2(λ) = P s1,s2r((T, S), λ) , (23)

where P s1,s2 is the permutation between s1 and s2, (T, S) =
∑

a T
a⊗Sa = C

is the casimir element, and r(C, λ) is just a function. By substituting (21)-
(23) to (20) we get:

P s1,s2r(C, λ− µ) (µ− i(T, σ)) (λ− i(S, σ))

= (λ− i(S, σ)) (µ− i(T, σ))P s1,s2r(C, λ− µ) (24)

in this point we will use the fact that:

(T, σ)(S, σ) = (T, S) + i ((S × T ), σ) (25)

and that:
P (T, σ)P = (S, σ) (26)

By considering the above we end up with the equation:

r(C, λ) (λ(S, σ) + ((T × S), σ) = (λ(T, σ) + ((T × S), σ)) r(C, λ)⇒
r(C, λ) (λSa + (T × S)a) = (λT a + (T × S)a) r(C, λ) , (27)

where we have made the substitution λ−µ→ λ. (27) consist actually of three
equations, one for each axis x,y and z. However, because of the symmetry of
XXXs model we can consider just one of the equations. For simplicity we
will consider the combination

r(C, λ)
[
λ(S1 + iS2) + (T × S)1 + i(T × S)2

]
=[

λ(T 1 + iT 2) + (T × S)1 + i(T × S)2
]
r(C, λ)⇒

r(C, λ)
(
λS+ + i[T 3S+ − S3T+]

)
=
(
λT+ + i[T 3S+ − S3T+]

)
r(C, λ) (28)

in a highest weight subspace. In such a subspace T+ + S+ = 0, and also
the element J = S3 + T 3 is constant and it can play the role of the casimir
element. Therefore we will use J , insead of C, from now on. By taking all
these into account the last equation takes the form:

r(J, λ
)
(λS+ + iJS+

)
=
(
−λS+ + iJS+

)
r(J, λ) (29)

in addition to the previous, we also consider that:

S+J = (J − 1)S+ (30)
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Figure 7: Diagramatic form
of the monodromy matrix Tf .
The horizontal double line
stands for the higher dimen-
sional auxilary space while ver-
tical double lines stand for the
local quantum spaces

hence,
r(J, λ) (λ+ iJ) = (−λ+ i(J − 1)) r((J − 1), λ) (31)

which has as solution:

r(J, λ) =
Γ(J + 1 + iλ)

Γ(J + 1− iλ)
(32)

and so the fundamental lax operator has the form:

Ln,f = P
Γ(J + 1 + iλ)

Γ(J + 1− iλ)
(33)

2.4 Another Monodromy and Transfer matrix

Now that we have in hand the fundamental lax operator we can define one
more monodromy matrix, which has the form:

Tf (λ) =
L∏
i=1

Li,f (34)

from which we get the transfer matrix:

tf (λ) = trTf (35)

Furthermore, because the fundamental lax operators satisfy the more general
commutator relation:

Rf1,f2(λ− µ)Ln,f1(λ)Ln,f2(µ) = Ln,f2(µ)Ln,f1(λ)Rf1,f2(λ− µ) (36)

we can show that tf consist a commutative family of operators, which means
that:

[tf (λ), tf (µ)] = 0 . (37)
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On top of that, because in (20) we can identify the R
1
2
,s with the Ln,α and

the Rs,s with the Ln,f , it is possible to prove the commutativity between that
families of transfer matrices t(λ) and tf (λ):

[t(λ), tf (µ)] = 0 (38)

The last relation is really important because it shows that the two families of
transfer matrices have the same eigenvectors, and so we can use tf (λ) to get
observables while we can use t(λ) to make the construct the Bethe Ansatz
Equation.

2.5 Calculating the Hamiltonian of XXXs model

Finally we are ready to calculate the Hamiltonian. We start from the formula:

H = i
d

dλ
ln(tf (λ))|λ=0 = i

L∑
i=1

d

dλ
r(J, λ)|λ=0 ⇒

H = i
L∑
i=1

Γ′(J + 1 + iλ)Γ(J + 1)− Γ(J + 1)Γ′(J + 1− iλ)

Γ2(J + 1)
⇒

H = i
L∑
i=1

Γ′(J + 1 + iλ)− Γ′(J + 1− iλ)

Γ(J + 1)
⇒

H =
L∑
i=1

(−2
2s∑
j=1

1

j
− γ)

H =
L∑
i=1

(
2s∑
j=1

Cj(
∑
a

SanS
a
n+1)

j)

)
(39)

In the case of spin-1 particles, C1 = −C2, hence:

H =
∑
a,n

(
SanS

a
n+1 − (SanS

a
n+1)

2
)

(40)

As we can see, this is not just a naive generalisation of the Hamiltonian of the
spin-1

2
case, but it has one more term. However it preserve all the symmetries

of the spin-1
2

hamiltonian.

3 Conclusion

In this notes, first, we introduce a new set of operators, the lax operators,
which we use to generalise the relation TTR = RTT . We did this in three

10



steps. Our final relation was among R-matrices for which both auxilary and
quantums space were 2s+ 1 dimensional spaces. In the next part we worked
on the XXXs model. We gave a more specific form to the lax operators,
and the generalised relations LLR = RLL, and we used them to find the
fundamental lax operator, a very important entity for the construction of
the Hamiltonian. Furthemore, we introduce two new pairs of monodromy
and transfer matrices, and we saw that the two families of transfer matrices
have the same base of eigenvectors. Finally, we used the transfer matrix tf to
construct the Hamiltonian.The construction of the integrable hamiltonians
for spin s magnetic chains is one of real achievements of the Algebraic Bethe
Ansatz.

4 Appendix

First, let’s take a more detailed look to the calculations between (24) and
(27), we start from (24)

P s1,s2r(C, λ− µ) (µ− i(T, σ)) (λ− i(S, σ)) =

(λ− i(S, σ)) (µ− i(T, σ))P s1,s2r(C, λ− µ)⇒
P s1,s2r(C, λ− µ) (µ− i(T, σ)) (λ− i(S, σ)) =

P s1,s2P s1,s2 (λ− i(S, σ))P s1,s2P s1,s2 (µ− i(T, σ))P s1,s2r(C, λ− µ)⇒

using that P (T, σ)P = (S, σ) we get:

r(C, λ−µ) (µ− i(T, σ)) (λ− i(S, σ)) = (λ− i(S, σ)) (µ− i(T, σ)) r(C, λ−µ)

considering the Pauli matrix property (T, σ)(S, σ) = (T, S) + i((S × T ), σ)
we get

r(C, λ− µ) (−iµ(S, σ)− iλ(T, σ)− (T, S) + i((T × S), σ)) =

(−iµ(T, σ)− iλ(S, σ)− (T, S) + i((T × S), σ)) r(C, λ− µ)⇒
((λ− µ)(T, σ) + i((T × S), σ)) r(C, λ−µ) = r(C, λ−µ) ((λ− µ)(S, σ) + i((T × S), σ))

finally by setting λ− µ→ λ we get:

(λT a + i(T × S)a) r(C, λ) = r(C, λ) (λSa + i(T × S)a)

Next we will see how did we get to (28). Considering (27) in one direction
we get:
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r(C, λ)(λS1 + (T × S)1) = (λT 1 + (T × S)1)r(C, λ)

ir(C, λ)(λS2 + (T × S)2) = i(λT 2 + (T × S)2)r(C, λ)

by adding the two equations and use the fact that S+ = S1 + iS2 we get:

r(C, λ)(λS+ + (T × S)1 + i(T × S)2) =

(λT+ + (T × S)1 + i(T × S)2)r(C, λ)⇒

r(C, λ)(λS+ +
1

2
[(T × S)1 − (S × T )1] +

i

2
[[(T × S)2 − (S × T )2]) =

(λT+ +
1

2
[(T × S)1 − (S × T )1] +

i

2
[[(T × S)2 − (S × T )2])r(C, λ)⇒

r(C, λ)(λS+ +
i

2
[−T+S3 + T 3S+ + S+T 3 − S3T+]) =

(λT+ +
i

2
[−T+S3 + T 3S+ + S+T 3 − S3T+])r(C, λ)⇒

r(C, λ)(λS+ + i(T 3S+ − S3T+)) = (λT+ + i(T 3S+ − S3T+))r(C, λ)
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