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1 Introduction

In the previous lectures we defined the abstract notions of Hopf algebra, enveloping algebra,
and quasi-triangularity. They were introduced as mathematical structures, but we found
out that they were intimately linked with the Yang Baxter equation and the notion of Yang
Baxter algebra. In this lecture we briefly review those concepts and work out a practical
example, namely the Yangian of the Lie algebra gln, to see how those abstract mathematical
notions connect and can be used from physicists to better understand spin models.
The construction we are going to define provides a complete definition of the Yang Baxter
algebra of the XXX model and can help in contextualizing our theory so far. By explicitly
building the Yangian, one can achieve a deeper understanding of the XXX model, and open
the door to generalizations to less trivial examples. As it turns out, Yangian symmetries ap-
pear also in the Hubbard model, 1+1D relativistic quantum field theory and supersymmetric
Yang-Mills theory in 4D. In mathematics the study of Y (gln) is linked with the representa-
tion theory of gln.
The key to understand the dynamic and the solutions to quantum spin models rely in the
Yang Baxter equation, and in the RTT relation, which together define the so-called Algebraic
Bethe Ansatz. A lot of work has been done to prove that the Bethe Ansatz provides a tool
to solve spin chains models, and the completeness of the method has been proven for a class
of them. Constructing explicitly the Yangian provides a tool to prove the completeness of
the Algebraic Bethe Ansatz in the case of the XXX model, a non trivial result. Although
this last part is not exposed here, the interested reader is referred to [5].

2 Defining the Yangian

Consider the Lie Algebra gln, generated by the elements {Eij}, with 0 ≤ i, j ≤ n, with
abstract commutation relations:

[Eij, Ekl] = δkjEil − δilEkj (1)
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The generators can be pictured as matrices composed of zeros and one in position ij:

Eij =


0 · · · 0 · · ·
...

. . .
...

0 · · · 1 · · ·
...

...
. . .


Recall the construction of the enveloping algebra, as:

U(gln) ≡
∞
⊕
k=0

gl⊗kn /[X,Y ]=XY−Y X

with gl⊗0n ≡ C. In the enveloping algebra we can construct the following matrix:

E =
n∑

i,j=1

Eij ⊗ Eij =

E11 E12 · · ·
E21 E22 · · ·

...
...

. . .


Which has as matrix elements the generators of gln. We will then look at (tensor) powers of
the matrix E, namely Es, which we can write as:

(Es)ij =
n∑

a,b,··· ,l=1

s times︷ ︸︸ ︷
Eia ⊗ Eab ⊗ · · · ⊗ Elj

For which we can prove, inductively, that:

[(Es+1)ij, (E
r)kl]− [(Es)ij, (E

r+1)kl] = (Es)kj(E
r)il − (Er)kj(E

s)il

Inspired by this construction we define the Yangian Y (gln) as the unital associative algebra,

generated by {t(n)ij }, with n ∈ N, 0 ≤ i, j ≤ n, such that:

[t
(s+1)
ij , t

(r)
kl ]− [t

(s)
ij , t

(r+1)
kl ] = t

(s)
kj t

(r)
il − t

(r)
kj t

(s)
il (2)

and we define t
(0)
ij = δij.

It may seem that we have done nothing, just renamed the powers of the matrix Es and
called them t(s). However, it turns out that the Yangian can be defined for any algebra
a and, quite interestingly, the case of gln has a natural homomorphism, Y (gln) → U(gln),
which is actually what we wrote above. This would also be a representation of the Yangian.

3 The Yangian of gl2

From now on we will work with setting n = 2, to have a more intuitive picture of what we
are doing and because this is enough to study the Yang Baxter algebra of the XXX model.
However the generalization of what follows to the case of gln is straightforward.
We will first define the formal serie:

tij(u) ≡
∞∑
n=0

t
(n)
ij u

−n ∈ Y (gl2)[[u]] (3)
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The word “formal” means that we write tij(u) as a serie, but we do not require it to converge.
It is a useful tool that will allow us to pack the defining relations (2) as1:

(u− v)[tij(u), tkl(v)] = tkj(u)til(v)− tkj(v)til(u) (4)

Proof (4) ⇐⇒ (2): Expanding the left hand side of (4) yields to:

(u− v)[tij(u), tkl(v)] =
∞∑

n,m=0

(
[t
(n)
ij , t

(m)
kl ]u−n+1v−m − [t

(n)
ij , t

(m)
kl ]u−nv−m+1

)
=

∞∑
n,m=0

(
[t
(n+1)
ij , t

(m)
kl ]− [t

(n)
ij , t

(m+1)
kl ]

)
u−nv−m

=
∞∑

n,m=0

(
t
(n)
kj t

(m)
il − t

(m)
kj t

(n)
il

)
u−nv−m

(5)

Where in the second step we just renamed the indices in the sum. �

With the formal series tij(u) we can now define the monodromy matrices, Ti(u):

T1(u) =
2∑

i,j=1

tij(u)⊗ Eij ⊗ 1 ∈ Y (gl2)[[u]]⊗ End(C2)⊗ End(C2)

T2(u) =
2∑

i,j=1

tij(u)⊗ 1⊗ Eij ∈ Y (gl2)[[u]]⊗ End(C2)⊗ End(C2)

(6)

Really what the above expressions mean is that the monodromy matrices are 4×4 matrices:

T1(u) =

(
t11(u) t12(u)
t21(u) t22(u)

)
⊗ 1 =


t11(u) t12(u)
t21(u) t22(u)

t11(u) t12(u)
t21(u) t22(u)



T2(u) =

(
t11(u)⊗ 1 t12(u)⊗ 1
t21(u)⊗ 1 t22(u)⊗ 1

)
=


t11(u) t12(u)

t11(u) t12(u)
t21(u) t22(u)

t21(u) t22(u)


Having constructed the monodromy matrices we need, for completing the Yang Baxter Al-
gebra structure, the R matrix. We will define it in terms of the permutation operator:

P =
2∑

i,j=1

Eij ⊗ Eji =


1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1

 ∈ End(C2)⊗ End(C2)

1later on we will identify the formal variable u as the rapidities of the model, although this has to be
done after fixing a representation.
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And our R matrix will be:

R = 1− P · u−1 =


1− u−1 0 0 0

0 1 −u−1 0
0 −u−1 1 0
0 0 0 1− u−1

 (7)

The defining relations (4) can be rewritten as:

R(u− v)T1(u)T2(v) = T2(v)T1(u)R(u− v) (8)

Proof (8) ⇐⇒ (4): We start by calculating the action of the permutation operator on the
basis elements of End(C2)⊗End(C2):

P · (Eij ⊗ Ekl) =
∑
i′,j′

∑
a

Ei′aEaj ⊗ Ej′aEal

= Ekj ⊗ Eil
(9)

And when we multiply from the right:

(Eij ⊗ Ekl) · P =
∑
i′,j′

∑
a

EiaEaj′ ⊗ EkaEai′

= Eil ⊗ Ekj
(10)

Then (8) is:

(1− (u− v)−1P )T1(u)T2(v) = T2(v)T1(u)(1− (u− v)−1P )

(u− v) (T1(u)T2(v)− T2(v)T1(u)) = PT1(u)T2(v)− T2(v)T1(u)P

By expanding the latter we obtain, on the left hand side:∑
i,j,k,l

(u− v)(tij(u)tkl(v)− tkl(v)tij(u))⊗ Eij ⊗ Ekl =

=
∑
i,j,k,l

(u− v)[tij(u), tkl(v)]⊗ Eij ⊗ Ekl
(11)

While the right hand side will be expanded as:∑
i,j,k,l

tij(u)tkl(v)⊗ P · (Eij ⊗ Ekl)− tkl(v)tij(u)⊗ (Eij ⊗ Ekl) · P

=
∑
i,j,k,l

tij(u)tkl(v)⊗ Ekj ⊗ Eil − tkl(v)tij(u)⊗ Eil ⊗ Ekj

=
∑

i′,j′,k′,l′

(tk′j′(u)ti′l′(v)− tk′j′(v)ti′l′(u))⊗ Ei′j′ ⊗ Ek′l′

(12)

Then, by comparing (11) with (12) we obtain (4) again. �

With this we have proven that the Yangian, defined by (2), or more precisely Y (gl2)[[u]]
is a Yang Baxter algebra. Furthermore, one can show by using the permutation properties
that the R matrix defined above satisfies the quasi-triangularity axiom, thus Y (gl2)[[u]] is
also a quasi triangular algebra.
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4 Hopf algebra structure, automorphisms and repre-

sentations

Recall that, in order to build a Hopf algebra structure, we need the co-multiplication, the
co-unit and the antipode maps, which we will define as:

∆(tij(u)) =
∑
a

tia(u)⊗ taj(u)

ε(T (u)) = 1

S(T (u)) = T−1(u)

Note that those definition, given on the monodromy matrices, really specify the action on
all generators. For example we have:

∆(t
(n)
ij ) =

∑
s+r=n

∑
a

t
(s)
ia ⊗ t

(r)
aj ,with s, r ∈ N

And the antipode, on the first coefficients:

S(t
(0)
ij ) = t

(0)
ij

S(t
(1)
ij ) = −t(1)ij

S(t
(2)
ij ) = −t(2)ij +

∑
a

t
(1)
ia t

(1)
aj

With these definitions the Yangian is indeed turned into an Hopf algebra.

We now look at automorphisms, which turn out to be useful later:

T (u) 7−→ BT (u)B−1, B ∈ End(C2)⊗ End(C2)

T (u) 7−→ T (u− z), with z ∈ C

T (u) 7−→ f(u)T (u), withf(u) = 1 + f1u
−1 + f2u

−2 + · · ·
(13)

For the following we will need the anti-automorphisms:

T (u) 7−→ T (−u)

T (u) 7−→ T t(u) ≡
2∑

i,j=1

tij(u)⊗ Eji
(14)

We can now find the representation:

Y (gl2) −→ U(gl2)

tij(u) 7−→ 1 + Eiju
−1 (15)

Proof: To prove that (15) is a representation of Y (gl2) we first use the automorphism2:

T (u) 7−→ T t(−u)

T (u) 7−→ 1−
∑
i,j

Eij ⊗ Eji · u−1 = 1− u−1P

2Since it is a composition of two anti automorphisms.
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The RTT relation then becomes:

(1− (u− v)−1P23)(1− u−1P12)(1− v−1P13) =

(1− v−1P13)(1− u−1P12)(1− (u− v)−1P23)

And it holds, as can easily be verified by using the permutation relations. �

We end this section by mentioning the inclusion map of the enveloping algebra in the Yan-
gian. We have:

U(gl2) ↪→ Y (gl2)

Eij 7→ t
(1)
ij

5 The quantum determinant and the center of Y (gl2)

The Hamiltonian of integrable spin chain systems can be thought as an element of a commut-
ing family of operators, the transfer matrices, which also generate all the conserved charges
of the system. We derived in the previous lectures that:

t(u) = Tra(Ta(u))

Where Va was the auxiliary space. In analogy with what we have seen for the 6-vertex model,
the auxiliary space we are going to use is C2. Inspired by this analogy we define the transfer
matrix as:

t(u) = t11(u) + t22(u)

Each coefficient of the above serie is commuting with all the others. However, they are not
in the center of Y (gl2).
The actual center is generated by the coefficients of the serie3:

qdet(T (u)) =
∑
σ∈Sn

sign(σ) · tσ(1)1(u) · · · tσ(n)n(u− n+ 1), for the general gln case

qdet(T (u)) = t11(u)t22(u− 1)− t12(u)t21(u− 1), for the gl2 case

(16)

Which is called the quantum determinant. Note that, in order to find all the coefficients in
the quantum determinant serie one has first to expand (u− 1) in power serie of u, and then
match each coefficient with the corresponding powers of u. The first coefficients are given
by:

q(0) = t
(0)
11 + t

(0)
22

q(1) = t
(1)
11 + t

(1)
22 − t

(1)
12 − t

(1)
21

q(2) = t
(1)
11 t

(1)
22 + t

(2)
11 + t

(2)
22 − t

(1)
12 t

(1)
21 − t

(2)
12 − t

(2)
21

It is possible to prove [3] that Y (gl2)
∼= Z ⊗ Y (sl2), where Z denotes the center of Y (gl2).

This also means that, if we want to build the Yangian for sl2, we can just take the quotient:

Y (sl2) = Y (gl2)/qdet(T (u))=1

3Here Sn is the permutation group of n elements.
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6 The Yang Baxter algebra of the XXX model

Recall from the previous lectures that we established a bridge between the lattices models in
statistical physics, and the spin chains models: they share the same R matrix. This can be
interpreted as identifying the time line in spin chains model with one of the spatial directions
in the statistical lattice models. In physics we call a similar procedure a Wick rotation.
We are then justified to consider the R matrix of the 6v model, as we derived it:

R =


a(u)

b(u) c(u)
c(u) b(u)

a(u)


The XXZ Heisemberg model share the same R matrix, and has asymmetry parameter:

∆ =
a2 + b2 − c2

2ab

We can easily find the XXX R matrix, by imposing that ∆ = 1, and noting that what
actually defines the model are the relative values a(u)/b(u) and c(u)/b(u). We can thus use
the parametrization:

a(u) = 1− u−1

b(u) = 1

c(u) = −u−1

Which will give us:

∆ =
1 + (1− u−1)2 − u−2

2(1− u−1)
= 1

Exactly what we wanted. Furthermore, the R matrix will be:

R =


1− u−1

1 −u−1
−u−1 1

1− u−1

 = 1− Pu−1 ∈ End(C2)⊗ End(C2)

Which is exactly the same R matrix of Y (gl2). This is enough to claim that the Yangian
we have defined before is indeed the Yang Baxter algebra of the XXX model. We also
note that, thanks to the automorphisms (13) it does not actually matter which particular
parametrization we choose, as we would expect in a physical model.
What one does at this point to solve the model is fix a representation of the Yangian, namely
the one defined by (15), and use the commutation relations to diagonalize the hamiltonian,
finding energy eigenstates and eigenvectors. This is equivalent to the procedure we analyzed
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in talk 6, where we used the adjoint representation:

T11(u) =

(
1− u−1 0

0 1

)
T22(u) =

(
1 0
0 1− u−1

)
T12(u) =

(
0 0
−u−1 0

)
T21(u) =

(
0 −u−1
0 0

)
Note also that to retrieve the Yangian of sl2 we should take the limit u→ +∞. In this case
we find that the quantum determinant :

qdet(T (u)) =
u− 2

u− 1
1
u→∞−→ 1

Studying other representations other than the ones we have analyzed yields to a connection
between the Bethe equations and the existence of irreducible representation of the Yangian.
With this procedure, in [5], the completeness of the Bethe Ansatz is proven for the XXX
model.

7 The Yangian as a symmetry group

The hamiltonian for the XXX model can be written as:

HXXX =
∑
k

2∑
i,j=1

Sijk S
ji
k+1

Where k denotes the lattice site and Sij are the generators of sl2. Those follows the same
commutations as the generators of gl2:

[Sij, Skl] = δkjSil − δilSkj

and are related to the usual Pauli matrices as:

σz = S11 − S22

σ+ = S12

σ− = S21

Because the model is isotropic in spatial direction, we expect it to be invariant under the
full rotation group. This yields to the conserved charge:

Q1
ij =

∑
k

Sijk
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However, the symmetry group is much larger, and includes an infinite tower of conserved
charges, progressively less local, involving thus 2, 3, · · · sites:

Q2
ij =

1

2

∑
l<k

∑
a

Sial S
aj
k − S

ia
k S

aj
l

The two charges we just defined are generators of the Yangian of sl2. If we impose the
condition qdet(T (u)) −→ 1, all the charges and their commutation relations can be expressed
as function of Q1

ij, Q
2
ij.

The relations between the conserved charges and the abstract generators of Y (gl2) are given
by:

Q1
ij = t

(1)
ij

Q2
ij = t

(2)
ij −

1

2

∑
k

t
(1)
ik t

(1)
kj

8 The Yangian of any Lie algebra a

Let a be generated by the set {Ia}a=1,··· ,n, with Lie brackets:

[Ia, Ib] = fabcIc

And add a second set of generators {Ja} in the adjoint representation of a:

[Ia, Jb] = fabcJc

With the coproduct:

∆(Ia) = 1⊗ Ia + Ia ⊗ 1

∆(Ja) = 1⊗ Ja + Ja ⊗ 1 +
h

2
fabcIb ⊗ Ic

The algebra generated by {Ia, Ja} is called the Yangian of the algebra a, Y (a).
Here the parameter h is the deformation parameter that makes the Yangian a quantum
group, and has the same role of the “Planck constant”. Note also that, for h → 0, we
retrieve the enveloping algebra. In this sense the Yangian is a deformation of the enveloping
algebra.
For the case of Y (sl2), we find the explicit relations between the generators {Si, J(Si)}i=z,+,−,
giving an Hopf algebra isomorphism [3]:

Sz = t
(1)
11 − t

(1)
22

S+ = t
(1)
12

S− = t
(1)
21

J(S+) = t
(2)
12 −

h

2
(t

(1)
11 + t

(1)
22 − 1)t

(1)
12

J(S−) = t
(2)
21 −

h

2
(t

(1)
11 + t

(1)
22 − 1)t

(1)
21

J(Sz) = t
(2)
11 − t

(2)
22 −

h

2
(t

(1)
11 + t

(1)
22 − 1)(t

(2)
11 − t

(2)
22 )
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