
Chapter 1

The Coordinate Bethe
Ansatz for the Heisenberg
XXX model

Written by N.W.M. Plantz

1.1 The model

In this chapter, we will be focussing on the Heisenberg XXX model. This spin
chain model consists of Hilbert spaceH and a Hamiltonian operator Ĥ : H → H.
Physically, this model describes a quantum-mechanical system of L spin-1/2
particles forming the sites of a one-dimensional periodic (i.e. circular) lattice.
The Hilbert space can be written as

H =
⊗

n∈Z/LZ

Vn, (1.1)

where each two-dimensional complex vector space Vn = span(|↑〉 , |↓〉) ∼= C2 is
associated to one particle of the spin chain. Note that due to the periodicity of
the lattice, the sum is performed over Z/LZ.

In terms of spin operators Si = 1
2σ

i for i ∈ {x, y, z} (~ = 1), where the σi

are the Pauli matrices, the Hamiltonian of this model can be written as

Ĥ = −J
∑

n∈Z/LZ

(
SxnS

x
n+1 + SynS

y
n+1 + SznS

z
n+1

)
. (1.2)

where Sin = IC2 ⊗ ...⊗ IC2 ⊗ Si ⊗ IC2 ⊗ ...⊗ IC2 , i.e. a tensor product of L− 1
identity operators acting on C2 and a spin operator Si at the nth position. The
parameter J is called the coupling constant. In this chapter, we take J > 0,
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which physically corresponds to a ferromagnetic spin chain. Furthermore, the
periodic boundary conditions of the lattice imply that Sin = Sin+L, which is also
displayed by the sum over Z/LZ. It will prove useful to introduce the raising
operator S+ and the lowering operator S−, which are given by S± = Sx ± iSy
as usual. In matrix form, this yields

S+ =

(
0 1
0 0

)
, S− =

(
0 0
1 0

)
. (1.3)

With these definitions we rewrite the Hamiltonian as

Ĥ = −J
2

∑
n∈Z/LZ

(
S+
n S
−
n+1 + S−n S

+
n+1 + 2SznS

z
n+1

)
. (1.4)

Since we will frequently make use of it, we write down the action of the spin

operators on the basis states |↑〉 =

(
1
0

)
and |↓〉 =

(
0
1

)
below:

S+ |↑〉 = 0, S− |↑〉 = |↓〉 , Sz |↑〉 =
1

2
|↑〉 ,

S− |↓〉 = 0, S+ |↓〉 = |↑〉 , Sz |↓〉 = −1

2
|↓〉 . (1.5)

The operators Szn and S±n act similarly on the spin at the nth lattice site, leaving
spins at all other sites invariant.

What are the symmetries of this Hamiltonian? From the definition (1.4), it
is clear that the Hamiltonian is translation invariant, corresponding to the sym-
metry group Z/LZ. Furthermore, using the commutation relations:

[Sx, Sy] = iSz and cyclic permutations of this relation, (1.6)

it easily follows that
[Ĥ, Si] = 0 (1.7)

for all i ∈ {x, y, z}. Thus, Ĥ commutes with all the generators of the Lie alge-
bra su(2), hence the Hamiltonian is SU(2) invariant. The full symmetry group
of the Hamiltonian is therefore G = Z/LZ × SU(2). For our purposes, it will
suffice to concentrate on the Z/LZ× U(1)z ⊂ G, the subscript z denoting that
we focus on the U(1) symmetry around the quantization axis.

The goal of this chapter is to find the (point) spectrum of the Hamiltonian
of the Heisenerg XXX model together with the corresponding eigenvectors. As
dimH = 2L, there are 2L of such eigenvectors, which means we must diagonal-
ize the 2L × 2L Hamiltonian matrix. This is a less than thrilling job. However,
note that due to the symmetry of the Hamiltonian, in particular the total z-
component of the spin is conserved. Therefore, if Ĥ acts on a state with a given
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number M ∈ {0, 1, ..., L} of spins down, the resulting state will have M spins
down as well. Hence, for these states we can write

Sz =
L

2
−M. (1.8)

and we can decompose the Hilbert space in invariant subspaces of the Hamilto-
nian:

H =

L⊕
M=0

HM , (1.9)

where HM is the subspace of H containing states with M spins down. Con-
sequently, we can diagonalize the Hamiltonian by diagonalizing its restriction
Ĥ|HM : HM → HM to each invariant subspace seperately.

In the following, we will perform this diagonalization for M = 0, M = 1 and
M = 2. We will see that finding the spectrum for the first two cases requires
little to no effort at all. The case M = 2 is less trivial. Here the Coordinate
Bethe Ansatz will provide us with a method to find the spectrum. Subsequently,
we can generalize the results obtained for M = 2 to general M . At the end of
the chapter we will briefly discuss string solutions, which we can use to describe
complexes of bound magnon states in the thermodynamic limit L→∞.

1.2 The case M = 0

For M = 0, we consider the invariant subspace H0, which is one dimensional
and spanned by the vector |0〉 = |↑↑ ... ↑〉. Acting with the Hamiltonian on this
state, we see that the first two terms inside the summation yield 0, because S−n
kills spin-up states. The last term inside the summation yields a factor 1

2 for

each n ∈ Z/LZ. Therefore Ĥ |0〉 = E0 |0〉, where the eigenvalue is given by

E0 = −JL
4
, (1.10)

which concludes the spectrum for M = 0.

Note that while |0〉 is indeed the ground state of the ferromagnetic state, for the
case J < 0 the notation |0〉 is deceiving! Indeed, for the anti-ferromagnetic state
(J < 0) the ground state is a state in which nearest neighbours are misaligned.
We can however safely ignore this subtlety, as we will only consider J > 0.

1.3 The case M = 1

For M = 1, we consider the invariant subspace H1, which has dimension L. It is
spanned by the vectors consisting of 1 spin down at some site n ∈ Z/LZ and L−1
spins up. We will denote these basis vectors as |n〉 = S−n |0〉 = |↑ ... ↑↓↑ ... ↑〉
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where the spin down is at site nth position. For this case, using the translational
symmetry Z/LZ, we can guess that eigenvectors must have the following form

|ψk〉 =
1√
L

∑
n∈Z/LZ

eikn |n〉 , (1.11)

where k ∈ 2π
L Z/LZ due to the periodicity of the lattice. Indeed, we see that

|ψk〉 is an eigenstate of the left-translation operator defined by T |n〉 = |n− 1〉:

T |ψk〉 =
1√
L

∑
n∈Z/LZ

eikn |n− 1〉

=
1√
L

∑
n∈Z/LZ

eik(n+1) |n〉 = eik |ψk〉 (1.12)

and right-translation is similar. Note that we have set the spacing between ad-
jacent sites to ∆x = 1.

To find the corresponding eigenvalues, we act with the Hamiltonian on (1.11).
Let us first write down the action of the terms in Ĥ on the basis states. When
the operator

∑
n S

+
n S
−
n+1 acts on a basis state |m〉, the S+

n will yield 0, except
when n = m, as follows from (1.5). For n = m, the down spin is flipped to up,
after which the up spin one site to the right is flipped down by S−n+1. Hence we
have that ∑

n∈Z/LZ

S+
n S
−
n+1 |m〉 = |m+ 1〉 . (1.13)

We see that this operator just acts like a shift operator to the right on the down
spin. Similarly, the operator

∑
n S
−
n S

+
n+1 acts like a shift operator to the left:∑

n∈Z/LZ

S+
n S
−
n+1 |m〉 = |m− 1〉 . (1.14)

Finally, the the operator
∑
n S

z
nS

z
n+1 gives a contribution of − 1

4 for each pair of
misaligned adjacent spins and a contribution of 1

4 for all other adjacent pairs.
Since each basis state has two misaligned adjacent pairs, we get∑

n∈Z/LZ

SznS
z
n+1 |m〉 =

L− 4

4
|m〉 . (1.15)
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With these last three equations, it is easy to write down the action of the
Hamiltonian on the vector (1.11). The result is

− 2

J
Ĥ |ψk〉 =

∑
m∈Z/LZ

(
S+
mS
−
m+1 + S−mS

+
m+1 + 2SzmS

z
m+1

) 1√
L

∑
n∈Z/LZ

eikn |n〉

=
1√
L

∑
n∈Z/LZ

eikn
(
|n+ 1〉+ |n− 1〉+

L− 4

2
|n〉
)

=
1√
L

∑
n∈Z/LZ

(
eik(n−1) + eik(n+1) +

L

2
− 2

)
|n〉

= 2(cos k − 1 +
L

4
) |ψk〉 =: − 2

J
Ek |ψk〉 (1.16)

from which we find the following eigenvalues Ek:

Ek − E0 = J(1− cos k) := E1(k), (1.17)

where we used (1.10). Note we indeed have that Ek=0 = E0. This degeneracy
(i.e. an eigenvalue with an eigenspace of dimension > 1) is a consequence
of the full SU(2) symmetry: note that we have only exploited a subgroup
U(1)z ⊂ SU(2). We have found L eigenvectors and the corresponding eigenval-
ues, so we are done with the case M = 1.

Equation (1.17) is also known as the magnon dispersion relation. Here a magnon
is a quasiparticle which is used to describe a collective excitation of the spin
structure of the spin chain above the groud state. The eigenstates are quan-
tized spin waves with wave number k.

1.4 The case M = 2

For M = 2, we consider the subspace H2 which has dimension
(
L
2

)
= 1

2L(L−1).
We will denote the basis states as |n1, n2〉 := S−n1

S−n2
|0〉. Unlike the case M = 1,

the translational invariance is not sufficient to give an Ansatz for the eigenstates.
Let us first write down the expression for a general state:

|ψ〉 =
∑
n2>n1

f(n1, n2) |n1, n2〉 , (1.18)

which is just a general linear combination of basis vectors ofH2. The summation
is over both n1 and n2. We restrict the sum to n2 > n1 since |n2, n1〉 = |n1, n2〉
and |n1, n1〉 = 0. The periodicity condition then becomes f(n1, n2) = f(n2, n1+
L). Without making any Ansatz just yet, let us apply the Hamiltonian to this
general state and see where this leads us.

Firstly, we write down the action of the terms in the Hamiltonian on the basis
states. Since we only have nearest-neighbour interactions, we only act on pairs
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of adjacent spins. Therefore, if the two down spins are not adjacent, the result
will strongly resemble the M = 1 case. We will treat the case where the two
down spins are adjacent (i.e. m2 = m1 ± 1 mod L) separately.

If the two down spins are not adjacent, the operator
∑
n S

+
n S
−
n+1 acts like a

shift operator to the right as in the case M = 1, but this time on both m1 and
m2. If the two down spins are adjacent, this shift operator can only work on
m2. Indeed, the down spin at site m1 cannot be shifted to the right, since the
spin at m1 + 1 = m2 is already down. We get:

∑
n∈Z/LZ

S+
n S
−
n+1 |m1,m2〉 =

{
|m1,m1 + 2〉 if m2 = m1 ± 1 mod L

|m1 + 1,m2〉+ |m1,m2 + 1〉 otherwise.

(1.19)

The operator
∑
n S
−
n S

+
n+1 works similarly as a shift operator to the left. If

the spins are adjacent, only the spin at site m1 can be shifted. We get:

∑
n∈Z/LZ

S−n S
+
n+1 |m1,m2〉 =

{
|m1 − 1,m1 + 1〉 if m2 = m1 ± 1 mod L

|m1 − 1,m2〉+ |m1,m2 − 1〉 otherwise.

(1.20)
As in the case M = 1, the operator

∑
n S

z
nS

z
n+1 gives a contribution − 1

4 for each
pair of misaligned adjacent spins and a contribution 1

4 for all other adjacent pairs
spins. If the two down spins are not adjacent, there are four pairs of misaligned
spins; if the down spins are adjacent there are two such pairs. Therefore we get:

∑
n∈Z/LZ

SznS
z
n+1 |m1,m2〉 =

{(
L−2
2 −

1
2

)
|m1,m1 + 1〉 if m2 = m1 ± 1 mod L(

L−4
4 − 1

)
|m1,m2〉 otherwise.

(1.21)
With this at hand, it is easy to write down the action of the Hamiltonian on
the general state (1.18). If we afterwards demand that |ψ〉 be an eigenvector,
we get equations relating the eigenvalues to the amplitudes f(n1, n2). One way
to do this, is to write the result in the form

Ĥ |ψ〉 =
∑

n2>n1+1

α(n1, n2) |n1, n2〉+
∑

n∈Z/LZ

β(n) |n, n+ 1〉 . (1.22)

Demanding |ψ〉 to be an eigenvector with eigenvalue E then yields the equations:{
α(n1, n2) = Ef(n1, n2) for n2 > n1 + 1,

β(n) = Ef(n, n+ 1).
(1.23)

6



We start with splitting the sum in the case where m1 and m2 are adjacent and
the case in which they are not. This yields:

− 2

J
Ĥ |ψ〉 =

∑
n2>n1

f(n1, n2)
∑

m∈Z/LZ

(
S+
mS
−
m+1 + S−mS

+
m+1 + 2SzmS

z
m+1

)
|n1, n2〉

=
∑

n2>n1+1

f(n1, n2)

(
|n1 + 1, n2〉+ |n1, n2 + 1〉

+ |n1 − 1, n2〉+ |n1, n2 − 1〉+
L− 8

2
|n1, n2〉

)
+

∑
n∈Z/LZ

f(n, n+ 1)

(
|n, n+ 2〉+ |n− 1, n+ 1〉+

L− 4

2
|n, n+ 1〉

)
=
∑
n2>n1

f(n1 − 1, n2) |n1, n2〉+
∑

n2>n1+2

f(n1, n2 − 1) |n1, n2〉

+
∑

n2>n1+2

f(n1 + 1, n2) |n1, n2〉+
∑
n2>n1

f(n1, n2 + 1) |n1, n2〉

+
∑

n2>n1+1

L− 8

2
f(n1, n2) |n1, n2〉

+
∑

n∈Z/LZ

f(n, n+ 1)

(
|n, n+ 2〉+ |n− 1, n+ 1〉+

L− 4

2
|n, n+ 1〉

)
(1.24)

where in the last step we shifted the first sum so as to get |n1, n2〉 in every term.
We now change the sums over n1 and n2 such that all these sums all run over
n2 > n1 + 1. Of course must also subtract the terms that we add in doing so.

7



This yields:

− 2

J
Ĥ |ψ〉 =

∑
n2>n1+1

(
f(n1 − 1, n2) + f(n1, n2 − 1) + f(n1 + 1, n2)

+ f(n1, n2 + 1) +
L− 8

2
f(n1, n2)

)
|n1, n2〉

+
∑

n∈Z/LZ

(
f(n− 1, n+ 1) |n, n+ 1〉 − f(n, n+ 1) |n, n+ 2〉

− f(n+ 1, n+ 2) |n, n+ 2〉+ f(n, n+ 2) |n, n+ 1〉
)

+
∑

n∈Z/LZ

f(n, n+ 1)

(
|n, n+ 2〉+ |n− 1, n+ 1〉+

L− 4

2
|n, n+ 1〉

)

=
∑

n2>n1+1

(
f(n1 − 1, n2) + f(n1, n2 − 1) + f(n1 + 1, n2)

+ f(n1, n2 + 1) +
L− 8

2
f(n1, n2)

)
|n1, n2〉

+
∑

n∈Z/LZ

(
f(n− 1, n+ 1) + f(n, n+ 2)− L− 4

2
f(n, n+ 1)

)
|n, n+ 1〉 .

(1.25)

Subsequently we read off the functions α and β. Equation (1.23) then becomes

(E − E0)f(n1, n2) =
J

2

(
4f(n1, n2)− f(n1 − 1, n2)− f(n1, n2 − 1)

−f(n1 + 1, n2)− f(n1, n2 + 1)

)
for n2 > n1 + 1 (1.26)

(E − E0)f(n, n+ 1) =
J

2
(2f(n, n+ 1)− f(n− 1, n+ 1)− f(n, n+ 2)) (1.27)

where we used (1.10).

Note that in an alternative approach, one could start from equation (1.24) and
change the sums over n1 and n2 such that all these sums all run over n2 > n1.
However the final equations agree with our approach, some subtleties will arise.
Details about these subtleties can be found in appendix 1.7.

To continue, we need to know what the coefficients f(n1, n2) look like. Consid-
ering the case M = 1, a naive guess would be to take the product of two free
waves:

fnaive(n1, n2) = Aei(k1n1+k2n2). (1.28)

Naturally, this Ansatz is a very unsatisfactory one, in the sense that it com-
pletely ignores the interaction which is clearly present in the Hamiltonian. To
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include the effect of this interaction, we use the celebrated Ansatz made by Hans
Bethe in his 1931 paper:

f(n1, n2) = Aei(k1n1+k2n2) +Bei(k2n1+k1n2). (1.29)

This Ansatz is known as the Coordinate Bethe Ansatz. Physically, we can
see from this Ansatz that the magnons interact and in doing so they exchange
momenta. Bethe’s brilliant insight was that in the regions where the down spins
are separated, the solution should look like a free wave, because we only consider
nearest-neighbour interactions. One way to see these free waves is by rewriting
the general state as

|ψ〉 = A
∑
n2>n1

ei(k1n1+k2n2) |n1, n2〉+B
∑
n1>n2

ei(k1n1+k2n2) |n1, n2〉 , (1.30)

where in the second sum we switched the dummy indices n1 and n2. We see that
this yields a product of free waves in the regions n2 > n1 and n1 > n2, but when
passing between these regions the amplitude changes due to the interaction. 1

We can now determine the spectrum by inserting the Coordinate Bethe Ansatz
(1.29) in equation (1.26). This yields

(E − E0)f(n1, n2) =
J

2

(
4
(
Aei(k1n1+k2n2) +Bei(k2n1+k1n2)

)
−
(
Aei(k1n1+k2n2)e−ik1 +Bei(k2n1+k1n2)e−ik2

)
−
(
Aei(k1n1+k2n2)eik1 +Bei(k2n1+k1n2)eik2

)
−
(
Aei(k1n1+k2n2)e−ik2 +Bei(k2n1+k1n2)e−ik1

)
−
(
Aei(k1n1+k2n2)eik2 +Bei(k2n1+k1n2)eik1

)
=

J

2
f(n1, n2)

(
4− eik1 − eik2 − e−ik1 − e−ik2

)
⇔ E − E0 = J(2− cos k1 − cos k2) =

2∑
i=1

E1(ki). (1.31)

We see that the energy is just the sum of two free-magnon energies with mo-
menta k1 and k2 respectively. This seems quite remarkable, because the magnons
do interact with each other. However, the interaction will result in momenta ki
which are different from the free magnon case. Consequently, the energy will
also be different from the non-interacting case.

1Note that the regions n2 > n1 and n1 > n2 are actually ill-defined due to the periodicity of
the lattice. However, we can define these regions by picking one site which we define as n = 0,
and then let n1, n2 ∈ {0, 1, ..., L − 1}. The periodicity condition f(n1, n2) = f(n2, n1 + L)
makes sure that nothing special happens when a down spin crosses n = 0.
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Having found the eigenvalues, we note that inserting (1.31) back in (1.26) and
putting n2 = n1 + 1, the equation still holds if we define f(n1, n2) by the Co-
ordinate Bethe Ansatz (1.29) for n1 = n2 as well. Subsequently we subtract
(1.26) for n2 = n1 + 1 from (1.27) to get

f(n, n) + f(n+ 1, n+ 1)− 2f(n, n+ 1) = 0. (1.32)

Note that the extension of f(n1, n2) to n1 = n2 has no physical meaning. It is
merely defined by (1.29). Equation (1.32) therefore depends on the form of the
Coordinate Bethe Ansatz.

If we insert the Bethe Ansatz in equation (1.32), we obtain a restriction on
the amplitudes A and B:

(A+B)ei(k1+k2)n + (A+B)ei(k1+k2)(n+1) − 2(Aei(k1n+k2(n+1) +Bei(k1(n+1)+k2n)) = 0

⇔ (A+B)
(

1 + ei(k1+k2)
)
− 2Aeik2 − 2Beik1 = 0

⇔ A

B
= −

(
ei(k1+k2) + 1− 2eik1

ei(k1+k2) + 1− 2eik2

)
. (1.33)

If we suppose that k1, k2 ∈ R, we note that∣∣∣∣AB
∣∣∣∣2 =

(
ei(k1+k2) + 1− 2eik1

ei(k1+k2) + 1− 2eik2

)(
e−i(k1+k2) + 1− 2e−ik1

e−i(k1+k2) + 1− 2e−ik2

)
=

(
ei(k1+k2) + 1− 2eik1

ei(k1+k2) + 1− 2eik2

)(
1 + ei(k1+k2) − 2eik2

1 + ei(k1+k2) − 2eik1

)
= 1, (1.34)

hence A
B is a phase and we can write

eiθ :=
A

B
= −

(
ei(k1+k2) + 1− 2eik1

ei(k1+k2) + 1− 2eik2

)
. (1.35)

If k1 and k2 are complex, then θ is complex as well. With this definition we can
rewrite the Bethe Ansatz:

f(n1, n2) = ei(k1n1+k2n2+
θ12
2 ) + ei(k2n1+k1n2+

θ21
2 ) (1.36)

where θ12 := θ =: −θ21. Note that we omitted an overall constant. Ignoring an
overall phase (which is physically irrelevant), another way of writing this is

f(n1, n2) = ei(k1n1+k2n2) + S(k2, k1)ei(k2n1+k1n2) (1.37)

where S(k2, k1) = e−iθ is an S-matrix element. Here we see that when the
magnons interact, they scatter and exchange momenta.

We still need to check the periodicity condition f(n1, n2) = f(n2, n1 +L). Sub-
stituting the Bethe Ansatz in the form (1.36) in here yields

ei(k1n1+k2n2+
θ
2 ) + ei(k1n2+k2n1− θ2 ) = ei(k1n2+k2n1+

θ
2+k2L) + ei(k1n1+k2n2− θ2+k1L)

⇔ eik1L = eiθ and eik2L = e−iθ. (1.38)
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The physical interpretation of this equation is that when magnon 1 goes around
the whole spin chain once, it picks up a phase θ as it scatters off particle 2.
Taking the logarithm of (1.38) yields{

k1L = θ + 2πm1

k2L = −θ + 2πm2

(1.39)

where m1,m2 ∈ Z/LZ are called the Bethe quantum numbers. These equations
are called the Bethe equations. Note that they differ from the free magnon case,
where we found kL = 2πm, m ∈ Z/LZ. Like the energy, the total momentum
K = k1 + k2 = 2π

L (m1 +m2) looks like a sum of free magnon momenta.

We know have everything we need to determine the spectrum and the cor-
responding eigenstates of the Hamiltonian restricted to the subspace H2. The
next step is to find pairs (m1,m2) such that the Bethe equations (1.39) have
a solution for k1 and k2, where θ should be such that (1.35) holds. The cor-
responding eigenvalue then follows from (1.31). Without loss of generality we
can choose representatives m1,m2 ∈ {0, 1, ..., L − 1} and pick m2 ≥ m1, since
interchanging m1 and m2 will produce the same eigenstate (up to an irrelevant
overall phase). There are 1

2L(L + 1) of such pairs (m1,m2), but L of these
will not yield a solution to the Bethe equations, so that we acquire exactly the
amount of eigenstates we want.

The Bethe equations can be solved using numerical methods. Here, we will
only give a brief description of the resulting spectrum.

• When m1 = 0, it is easy to see that k1 = 0, θ = 0 and k2 = 2πm2

L solve the
Bethe equations. The corresponding energies are then E = J(1− cos k2).
This degeneracy with the M = 1 case is an expected result. Since we only
exploited U(1)z ⊂ SU(2) symmetry, it is a consequence of the full SU(2)
symmetry.

• When |m2 −m1| ≥ 2 (for all representatives of m1 and m2 in Z/LZ) we
have scattering states. There are 1

2 (L − 2)(L − 3) of these states. They
are characterized by having (k1, k2) ∈ R2, which physically corresponds
to ‘real’ quasiparticles scattering off each other.

• When (m2−m1) ∈ {0,±1} mod L, we find bound states. There are 2L−3
of these pairs (m1,m2), but only L−3 of them yield a solution. The bound
states are characterized by (k1, k2) ∈ C2. Physically this is not so strange,
as k1 and k2 are not real momenta but rather pseudomomenta of bound
quasiparticles. However, the total momentum K = k1 + k2 of the bound
state must be real. It can be shown that in the thermodynamic limit, in
which the number of lattice sites L is sent to infinity, the energy is given
by E−E0 = J

2 (1− cosK) (see equation (1.59) in section 1.6). This shows
that the bound state indeed seems to behave like one entity rather than
like two particles. It can also be shown that the amplitudes f(n1, n2)

11



decrease exponentially as the distance between the two down spins grows.
More about bound states in the thermodynamic limit can be found in
section 1.6.

1.5 The general case

Here we let M ∈ {0, 1, ..., L} be arbitrary. We consider the invariant subspace
HM , which has dimension

(
L
M

)
. It is spanned by the vectors consisting of M

spins down at sites ni, i = 1, ...,M . We will denote these basis vectors as
|n1, ..., nM 〉 = S−n1

...S−nM |0〉. A general state can then be written as

|ψ〉 =
∑

L≥nM>...>n1≥1

f(n1, ..., nM ) |n1, ..., nM 〉 . (1.40)

To find the spectrum, we need to generalize the coordinate Bethe Ansatz. We
can generalize (1.29) as follows:

f(n1, ..., nM ) =
∑
P∈SM

AP exp

i M∑
j=1

kP (j)nj

 , (1.41)

where SM is the permutation group over the set {1, ...,M}. However, it will
prove convenient to instead generalize the Ansatz (1.36):

f(n1, ..., nM ) =
∑
P∈SM

exp

i M∑
j=1

kP (j)nj +
i

2

∑
l<j

θP (l)P (j)

 , (1.42)

for reasons which will become clear in a moment. For now, just treat
∑
l<j θP (l)P (j)

as any function of the quasimomenta ki and the permutation P .

We can now act with the Hamiltonian on (1.40), demand that |ψ〉 is an eigen-
vector and substitute (1.42) in the result, just like we did in the case M = 2.
We will not do this explicitly, but rather give the result immediately:

E − E0 = J

M∑
i=1

(1− cos ki) =

M∑
i=1

E1(ki), (1.43)

where E1(ki) is defined in (1.17). Again, this looks like a sum of free-magnon
energies. However, as in the M = 2 case, we will find that the interaction be-
tween the magnons results in different quasimomenta ki than one would obtain
in the non-interacting case.

The action of Ĥ on |ψ〉 also yields the following conditions on the θjl:

eiθjl = −
(
ei(kj+kl) + 1− 2eikj

ei(kj+kl) + 1− 2eikl

)
. (1.44)
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This generalizes equation (1.35); note that this is actually exactly the same
equation! So the θjl are scattering phases, just like in the case M = 2.

Applying the periodicity condition f(n1, ..., nM ) = f(n2, ..., nM , n1 + L) yields
even more similarities to the M = 2 case. Let us see what happens. Inserting
the Bethe Ansatz (1.42) in the periodicity condition gives

∑
P∈SM

exp

i M∑
j=1

kP (j)nj +
i

2

∑
l<j

θP (l)P (j)


=
∑
P∈SM

exp

iM−1∑
j=1

kP (j)nj+1 + ikP (M)(n1 + L) +
i

2

∑
l<j

θP (l)P (j)

 . (1.45)

Now note that all permutations appear on both sides of the equation. Let
P ∈ SM be arbitrary. Then we must have that the coefficient in front of

exp
(
i
∑M
j=1 kP (j)nj

)
on the left-hand side must be equal to the coefficient of

this same exponent on the right-hand side. Let P ′ be the permutation such that
P ′(j) = P (j + 1) and P ′(M) = P (1). It follows that we must have

exp

i M∑
j=1

kP (j)nj +
i

2

M∑
l<j

θP (l)P (j)


= exp

iM−1∑
j=1

kP ′(j)nj+1 + ikP ′(M)n1 +
i

2

M∑
l<j

θP ′(l)P ′(j) + ikP ′(M)L


= exp

iM−1∑
j=1

kP (j+1)nj+1 + ikP (1)n1 +
i

2

M−1∑
l<j

θP (l+1)P (j+1) +
i

2

M∑
l=2

θP (l)P (1) + ikP (1)L


(1.46)

and hence

exp

 i

2

M∑
l<j

θP (l)P (j)

 = exp

 i

2

M−1∑
l<j

θP (l+1)P (j+1) +
i

2

M∑
l=2

θP (l)P (1) + ikP (1)L

 .

(1.47)
We see that the first sum on the right-hand side cancels all terms in the sum
on the left-hand side except when l = 1. Then taking the second sum on the
right-hand side to the left-hand side and using θij = −θji we get

exp

i M∑
j=2

θP (1)P (j)

 = exp
(
ikP (1)L

)
. (1.48)

Since P ∈ SM was arbitrary, this must hold for any index P (1) and we can
write this as ∏

j 6=l

exp (iθlj) = exp (iklL) (1.49)
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where the product is over j only. This equation has an interesting interpreta-
tion. We see that if some particle l goes around the spin chain once, it picks up
a phase θlj each time it passes another particle j. This is the same result as in
the M = 2 case. The equation (1.49) shows that the S-matrix for the general M
case can be expressed in terms of products of two-body S-matrix elements. This
result is also known as factorized scattering. Note that we actually anticipated
this highly non-trivial result by choosing the Coordinate Bethe Ansatz in the
form (1.36), such that the phases θij are exactly the same as in the M = 2 case.
The results clearly show that solving the M = 2 case first has been useful: the
general results can be expressed in terms of the M = 2 results.

Taking the logarithm of equation (1.49) gives

klL = 2πml +
∑
j 6=l

θlj . (1.50)

These are the general Bethe equations. Once again, the interaction introduces
phase shifts in the quasimomenta with respect to the free magnon quasimo-
menta. The total momentum is then given by

K =
2π

L

M∑
j=1

mj (1.51)

which again looks like a sum of free magnon momenta. Similarly to the caseM =
2, finding the eigenvectors now amounts to finding (m1, ...,mM ) ∈ (Z/LZ)M

such that the equations (1.44) and (1.50) have solutions for some (k1, ..., kM ) ∈
CM .

Factorized scattering is usually a consequence of conserved quantities. A flaw of
the Coordinate Bethe Ansatz is that we cannot find these conserved quantities.
However, with the Algebraic Bethe Ansatz this is possible. Other advantages of
the Algebraic Bethe Ansatz are that it can be used to prove the integrability of
the model and that it yields algebraic equations which are easier to solve. More
on the Algebraic Bethe Ansatz can be found in a later chapter.

1.6 String solutions

We start by introducing the rapidity, which is defined as

λj = cot
kj
2

= i
exp

(
ikj
2

)
− exp

(
− ikj2

)
exp

(
ikj
2

)
+ exp

(
−ikj
2

) (1.52)

so that

kj =
1

i
ln
λj + i

λj − i
. (1.53)
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We will now write the Bethe equations in terms of these rapidities. We start
with the M = 2 case. Here we rewrite the left-hand side of the Bethe equations
(1.38) using (1.53), and we rewrite the scattering phases (1.35) in terms of the
rapidities. This yields (

λj + i

λj − i

)L
=
λj − λl + 2i

λj − λl − 2i
(1.54)

where j, l ∈ {1, 2}, j 6= l. Note that the right-hand side now depends only on
the difference of rapidities, which was one reason introduce rapidities in the first
place.

Next, let us consider the case where Imλj 6= 0. As stated before, these states
correspond to bound states. If we now take the thermodynamic limit L → ∞
of (1.54), the left-hand side either goes to 0 or to∞. This must also be true for
the right-hand side. We therefore find that

λ1 − λ2 = ±2i. (1.55)

Furthermore, requiring that the total momentum k1 + k2 be real, which implies
λ1 = λ∗2, then yields

λ1,2 = λ± 2i (1.56)

where λ ∈ R. For the total momentum K1/2 = k1 + k2 we find using (1.53):

eiK1/2 =
λ+ 2i

λ− i
. (1.57)

Defining the energy

ε = −J dK

dλ
(1.58)

we find

ε1/2 =
4J

λ2 + 4
=
J

2
(1− cosK1/2). (1.59)

Notice that
ε1/2(K) < ε0(K − k) + ε0(k) (1.60)

∀K, k ∈ [0, 2π), where ε0(k) = J(1−cos k) is an individual-magnon energy. This
shows that the bound state is energetically favorable in comparison to a state
where the two magnons are free. However, the most important observation here
is that the bound state behaves like a single entity with momentum K1/2 and
energy ε1/2, rather than as two particles with momenta k1 and k2 respectively.
This particular bound state is also called a 1/2-complex (hence the subscripts).
We will come back to this terminology below.

We now turn to the case of general M . Again, we look at complex rapidi-
ties. Now we wish to know if also in this case, we can describe the physics by
treating single entities of bound states of magnons. This would certainly be a
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simplification compared to the case where we describe M individual interacting
magnons! The answer to this question is the content of the string hypothesis.
This hypothesis states that we can partition the M rapidities of an eigenvector
of the Hamiltonian into so-called r-complexes, also known as strings. Such an
r-complex, where r ∈ 1

2N ∪ {0}, consists of 2r + 1 rapidities of with equal real
parts λr and imaginary parts equidistantly distributed around the real line, in
the following way:

λr,m = λr + 2im. (1.61)

Here, m ∈ {−r,−r+1, ..., r−1, r}, so the solution looks like a ‘string’ of equidis-
tant points (rapidities) in the complex plane. A 0-complex is just an individual
magnon.

Let us see how these complexes behave. We can compute the quantity Kr :=
k−r + k−r+1 + ...+ kr where the quasimomenta ki correspond to the rapidities
in the r-complex under consideration. Using (1.53), the result is

Kr =
1

i
ln

(
λr + i(2r + 1)

λr + i(2r − 1)

λr + i(2r − 1)

λr + i(2r − 3)
...
λr + i(−2r + 1)

λr + i(−2r − 1)

)
=

1

i
ln

(
λr + i(2r + 1)

λr − i(2r + 1)

)
. (1.62)

Note that this result only depends on λr, which is a quantity all rapidities in
the complex have in common! Therefore we can treat Kr as the momentum of
the r-complex. The corresponding energy of the complex follows from (1.58),
which yields

εr =
J

2r + 1
(1− cosKr) . (1.63)

Therefore, validity of the string hypothesis implies that we can indeed treat
the complexes of bound states as single entities. Note that we saw this in the
thermodynamic limit of the case M = 2, where we had a 1/2-complex which was
described as a single entity with energy ε1/2. The string hypothesis generalizes
this to the case of general M . Other physical processes can be described in
terms of the complexes as well. For example, we can consider the process where
a magnon scatters off an r-complex. The S-matrix element can the be found
by just taking the product of all scattering phases with the magnons in the
complex. Using (1.54), this yields

S0,r(λ0 − λr) =
λ0 − λr + 2ir

λ0 − λr − 2ir

λ0 − λr + 2i(r + 1)

λ0 − λr − 2i(r + 1)
(1.64)

where all other factors of the product cancel (in a similar way to the calculation
of Kr).

Being able to treat these complexes like single entities is of course tremen-
dously convenient. However, when is the string hypothesis actually valid? It
has been shown that outside the thermodynamic limit, the string hypothesis
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fails to hold. Counterexamples to the string hypothesis have also been provided
for quite large systems. However, in the thermodynamic limit, it is believed
that the string solutions provide a good description of the thermodynamics of
the system. This is despite the fact that the hypothesis has never been proven
to exhaust the whole Hilbert space.
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1.7 Appendix 1: Alternative derivation of (1.26)
and (1.32)

Here we provide an alternative derivation of the energy for the case M = 2
and the condition (1.32). This alternative derivation is for example followed by
Arutyunov (see reference 3). In this approach, rather than writing the action
of the Hamiltonian on a general state as (1.22), we write

Ĥ |ψ〉 =
∑
n2>n1

α̃(n1, n2) |n1, n2〉+
∑

n∈Z/LZ

β̃(n) |n, n+ 1〉 . (1.65)

Demanding |ψ〉 to be an eigenvector with eigenvalue E then yields the equations:{
α̃(n1, n2) = Ef(n1, n2),

β̃(n) = 0.
(1.66)

We start from (1.24). This time, we extend the sums over n1 and n2 by adding
terms such that all these sums all run over n2 > n1. Of course we also have to
subtract the terms we added. This yields:

− 2

J
Ĥ |ψ〉 =

∑
n2>n1

(
f(n1 − 1, n2) + f(n1, n2 − 1) + f(n1 + 1, n2)

+ f(n1, n2 + 1) +
L− 8

2
f(n1, n2)

)
|n1, n2〉

−
∑

n∈Z/LZ

(
f(n, n) |n, n+ 1〉+ f(n, n+ 1) |n, n+ 2〉+ f(n+ 1, n+ 1) |n, n+ 1〉

+ f(n+ 1, n+ 2) |n, n+ 2〉+
L− 8

2
f(n, n+ 1) |n, n+ 1〉

)
+

∑
n∈Z/LZ

f(n, n+ 1)(|n, n+ 2〉+ |n− 1, n+ 1〉+
L− 4

2
|n, n+ 1〉)

)

=
∑
n2>n1

(
f(n1 − 1, n2) + f(n1, n2 − 1) + f(n1 + 1, n2)

+ f(n1, n2 + 1) +
L− 8

2
f(n1, n2)

)
|n1, n2〉

−
∑

n∈Z/LZ

(
f(n, n) + f(n+ 1, n+ 1)− 2f(n, n+ 1)

)
|n, n+ 1〉 .

(1.67)

You should now be shocked and very confused: the above procedure immediately
yields terms f(n1, n2) with n1 = n2, whereas these terms are not defined in the
expansion (1.18)! Note that at this point, we did not define the Coordinate
Bethe Ansatz yet either. In other words, we have assumed here that whatever
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form the f(n1, n2) take, we can extend this form to n1 = n2. But why this is
the case is not clear at this point. Despite this oddity, this assumption does
yield the correct result: reading off the functions α̃ and β̃, (1.66) becomes

(E − E0)f(n1, n2) =
J

2
(4f(n1, n2)− f(n1 − 1, n2)− f(n1, n2 − 1)

−f(n1 + 1, n2)− f(n1, n2 + 1)) (1.68)

0 = f(n, n) + f(n+ 1, n+ 1)− 2f(n, n+ 1) (1.69)

where we used (1.10). But these are exactly the results we are supposed to
get, i.e. (1.26) and (1.32)! Of course, the reason is that in our other approach,
we found that (1.26) also holds for n1 = n2. This justified the extension of
f(n1, n2), after which equation (1.69) followed from equation (1.27). However,
to conclude this, we made use of that fact that we had already defined the Co-
ordinate Bethe Ansatz.

We conclude that we need introduce the Bethe Ansatz in order to justify the
extension to f(n, n) and hence also to justify equation (1.32). Thus, when using
this approach, we either need to define the Bethe Ansatz at an earlier stage
(which is done in Arutyunov’s notes), or use our original approach to justify the
validity of equation (1.69).

1.8 Appendix 2: Homework: comparison to the
article bu Langlands and Saint-Aubin

In the article by Robert P. Langlands and Yvan Saint-Aubin (see reference 4),
the same quantum-mechanical model is treated. Here we compare the first two
pages of this article to the conventions in our approach.

• In the first equation X is just the Hilbert space, defined in the same way
as we did.

• u+ = |↑〉 , u− = |↓〉 or vice versa.

• um1,...,mr is the state with r spins up at sites m1, ...,mr. The article
characterizes states by the sites at which the spins are up rather than
down, contrary to our approach. Both approaches are equivalent. This
also follows from their decomposition of the Hilbert spaces in invariant
subspaces with r spins up rather than M spins down.

• The action of Hr yields a′m1,...,mr . The first term inside the sum corre-
sponds to the action of

∑
n∈Z/LZ S

z
nS

z
n+1, the other terms correspond to

the other terms in the Hamiltonian. Indeed: we have seen that these other
terms shift the misaligned spin by one site.

• The Bethe Ansatz put forward in the article is indeed a sum of permu-
tations as in our case, w corresponding to the scattering phases and z
corresponding to the pseudomomenta.

19



1.9 References

1. Franchini: Notes on Bethe Ansatz Techniques, Lecture notes (2011);

2. Faddeev: How Algebraic Bethe Ansatz works for integrable model. Les
Houches lecture notes; ArXiv preprint hep-th/9605187 (1996);

3. Arutyunov: Student Seminar: Classical and Quantum Integrable Systems,
Lecture notes (2007);

4. Langlands, Saint-Aubin: Algebro-geometric aspects of the Bethe equa-
tions. In: Strings and Symmetries, Proc of Grsey Memorial Conference,
Istanbul, Springer-Verlag (1995).

20


