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This document provides a comparison of the different notations and conventions in the literature used for the Seminar on Quantum Integrable Models taught
at Utrecht University in fall 2013; the sources referred to below can be found at the course webpage. Notice that the notation indicates where the reference is in
the scale from mathematical to physical literature, and which material it roughly covers. I have tried to reproduce the notation of those references as closely as
possible (unless that costs too much space). Please let me know if you spot any mistakes.
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1 Hilbert space, Hamiltonian

To save some space in the table below I have replaced a part of the expressions for the Hamiltonian by ‘· · · ’. Further, ‘vacuum’ really means pseudovacuum,
i.e. the lowest (or sometimes highest) weight vector for the total spin operator Sz. In general the (Fock) space of states can be constructed from this vector in
terms of spin waves (magnons). In the ferromagnetic regime of the xxx model, the pseudovacuum correspond to a physical vacuum state with minimal energy
eigenvalue.
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http://www.staff.science.uu.nl/~henri105/Seminars/SpinChains.html


Hilbert space total spin (in z-direction) Hamiltonian
local basis # sites global operator # magnons eigenspaces operator vacuum

[Bax] − − N − − n − H = − 1
2

N∑
j=1

[Jxσ
x
j σ

x
j+1 + · · · ] −

[GRS] V
1
2 |⇑〉, |⇓〉 L H (L) =

L⊗
V

1
2 Sztotal = ∆L−1(Sz) =

L∑
i=1

Szi M H
(L)
M HXXX = J

L∑
i=1

(
σxi σ

x
i+1 + · · ·

)
|Ω〉

[JM] Vk v+, v− N WN =
⊗
k∈ZN

Vk SN = ∆(N−1)(Sz) =
1

2

∑
k∈ZN

σzk s+N/2 W
(s)
N HXXZ = −1

2

∑
k

(σxkσ
x
k+1 + · · · ) Ω−

[KBI] − |↑〉m, |↓〉m M − Sz =
1

2

M∑
m=1

σ(m)
z N − H0 = −

M∑
m=1

{
σ(m)
x σ(m+1)

x + · · · − 1

}
|0′〉

[Bat] − − L − − n − H =
J

2

L∑
i=1

(σi · σi+1 + 1) −

[DEFK] C2 |↑〉, |↓〉 N W = (C2)⊗N Sz = ∆(N)(Sz) =

N∑
i=1

Szi M − H =
∑
i

(JxS
x
i S

x
i+1 + · · · ) |Ω〉

[Fad] hn = C2 e+, e− N HN =

N∏
n=1

⊗hn Sz =
∑
n

Szn l − H =
∑
α,n

(
SαnS

α
n+1 −

1

4

)
Ω

[Fra] − |↑〉, |↓〉 N − Sz ≡
N∑
n=1

Szn r − H = −J
N∑
n=1

Sn · Sn+1 |0〉

[KM] − |↑〉, |↓〉 N − SzT ≡
N∑
n=1

Szn r − H = −J
N∑
n=1

Sn · Sn+1 |F 〉

[Tol] − − N − − n − − −

The differences in the column with the total spin operator are easy to understand: the spin operators Sx, Sy, Sz are usually given in terms of the Pauli matrices
σx, σy, σz (which form a basis for su2) as ~S = ~

2~σ; by expressing the energy in units of Planck’s constant we may arrange ~ = 1.
Also notice the various conventions used for the Hamiltonian. With a particular goal in mind, it may be convenient to

• introduce an overall minus sign when one is interested in the antiferromagnetic regime, where the spins tend to anti-align;

• set the ground state energy equal to zero by shifting the Hamiltonian by a constant (this again depends on the regime one is interested in);

• absorb J by a rescaling of the spin operators.
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2 Coordinate Bethe Ansatz, Bethe-Ansatz equations

coordinate Bethe Ansatz Bethe-Ansatz equations
‘S-matrix form’ logarithmic form

[Bax] g(x1, . . . , xn) =
∑
P

Ap1,...,pnz
x1
p1 . . . z

xn
pn zNj = (−)n−1

n∏
l=1
6=j

sl,j/sj,l Nkj = 2πIj −
n∑
l=1

Θ(kj , kl)

[GRS] f(x1, . . . , xM ) =
∑
p∈SM

Ap ei(kp(1)x1+···+kp(M)xM ) eikiL =

M∏
j=1
j 6=i

Ŝji(kj , ki) Lki = 2πIi +

M∑
j=1

Θ(ki, kj)

[JM] − − −

[KBI] (really long, see below) exp{−ip0(λα)M} = exp

i
N∑
β=1
β 6=α

θ(λα − λβ)

 (−1)N−1 Mp0(λα) +

N∑
β=1

θ(λα − λβ) = 2πnα

[Bat] a(x1, . . . , xn) =
∑
P∈Sn

AP exp

 n∑
j=1

ikpjxj

 exp ikjL = (−1)n−1
∏
` 6=j

s`j
sj`

−

[DEFK] − − −

[Fad] − eip(λk)N =

l∏
k=1

S(λk − λl) Np(λj) = 2πQj +

l∑
k=1

ϕ(λj − λk)

[Fra] f(n1, . . . , nr) =
∑
P∈Sr

exp

i

r∑
j=1

kPjnj +
i

2

∑
l<j

θPlPj

 − Nkj = 2πĨj +
∑
l 6=j

θjl

[KM] a(n1, . . . , nr) =
∑
P∈Sr

exp

i r∑
j=1

kPjnj +
i

2

∑
i<j

θPiPj

 − Nki = 2πλi +
∑
j 6=i

θij

[Tol] g(x1, . . . , xn) =
∑
σ∈Sn

Aσz
x1

σ(1) . . . z
xn

σ(n) znj = (−1)n−1
n∏
l 6=i

s`,i
si,`

NKj = 2πIj −
n∑
`=1

Θ(Kj ,K`)

The coordinate Bethe Ansatz in [KBI] is written in a form that anticipates the (physical interpretation of the) result; see Chapter II and in particular equa-
tions (1.12)− (1.15). For completeness we quote their expression for the Bethe Ansatz:

χN =

{ ∏
N≥b>a≥1

ε(mb −ma)

}∑
Q

(−1)[Q] exp

{
− i

N∑
a=1

map0(λQa)

}
exp

{
−i
2

∑
N≥b>a≥1

θ(λQb − λQa)ε(mb −ma)

}
.
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3 Rapidities, transfer matrix, more Bethe-Ansatz equations

rapidities (= spectral parameters) transfer matrix Bethe-Ansatz equations in terms of rapidities
symbol defined by Boltzmann weight tranfer monodromy (rational for xxx, hyperbolic for xxz/six-vertex)

[Bax] α zj = exp(ikj) =
sinh 1

2 (λ+ iαj)

sinh 1
2 (λ− iαj)

w(µ, α|β, µ′) V −
[

sinh 1
2 (λ+ iαj)

sinh 1
2 (λ− iαj)

]N
= −

n∏
l=1

sinh[ 12 i(αl − αj)− λ
′]

sinh[ 12 i(αl − αj) + λ′]

[GRS] u or λ uj =
γ

2
(λj − i) , eikj =

eγλj − eiγ

eγλj+iγ − 1
W

(
β ν
µ α

)
≡ Rνβ

µα t T

(
sinh γ

2 (λj + i)

sinh γ
2 (λj − i)

)L
=

M∏
j=1
j 6=i

sinh γ
2 (λj − λk + 2i)

sinh γ
2 (λj − λk − 2i)

[JM] ζ − R
ε′1,ε

′
2

ε1,ε2 T T −

[KBI] λ p0(λ) = i ln

[
cosh(λ− iη)

cosh(λ+ iη)

]
− τ T

(
λj + ic/2

λj − ic/2

)M
=

N∏
k=1
k 6=j

λj − λk + ic

λj − λk − ic

[Bat] − − − − − −

[DEFK] λ − − t Ta

(
sinh(λi + iµs)

sinh(λi − iµs)

)N
=

M∏
i 6=j

sinh(λi − λj + iµ)

sinh(λi − λj − iµ)

[Fad] λ − − F TN,a

(
λj + i/2

λj − i/2

)N
=

l∏
k 6=j

λj − λk + i

λj − λk − i

[Fra] λ kj =
1

i
ln
λj + i

λj − i
Lα

′γ′

αγ T T
(
λj + i

λj − i

)N
=
∏
l 6=j

λj − λl + 2i

λj − λl − 2i

[KM] − − − − − −
[Tol] − − ω(µα|µ′β) = Rµ

′β
µα V − −

Notice that [Bax] considers a lattice with M rows and N columns, and the transfer matrix V is obtained as a horizontal trace, i.e. by tracing over the vertices
on a row of the lattice. Phrased differently: thinking of the transfer matrix as a (discrete) time evolution operator, the (periodic) time increases as we move up.
The partition function is given by Z = TraceVM . On the other hand, the set-up of [JM] is the opposite: they take N rows and M columns, and compute the
transfer matrix T as a vertical trace; in this picture time increases to the right. As a result we have that Z = tr (TM ) also in this case.

4 Conclusion: what do we do?

The existence of various notations and conventions of signs can be annoying, but it is a part of life — so we may as well get used to it. Nevertheless, to avoid
unnecessary confusion, let us at least stick to the following throughout our seminar: we use L for the number of lattice sites, i.e. the length of the spin chain,
and M for the number of magnons.
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