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The string group String(n) is the 3-connected cover of Spin(n). Given and
compact simply connected group G, we will let String,; be its 3-connected cover.
The group Stringg is only defined up to homotopy, and various models have
appeared in the literature. Stephan Stolz and Peter Teichner [7], [6] have a
couple of models of String, one of which, inspired by Anthony Wassermann, is
an extension of G by the group of projective unitary operators in a particular
Von-Neuman algebra. Jean-Luc Brylinski [4] has a model which is a U(1)-gerbe
with connection over the group G. More recently, John Baez et al [2] came up
with a model of String, in their quest for a 2-Lie group integrating a given 2-Lie
algebra. We show how to produce their model by applying a certain canonical
procedure to their 2-Lie algebra.

A 2-Lie algebra is a two step L.,-algebra. It consists of two vector spaces
Vo and Vi, and three brackets [], [,], [,,] acting on V := V @ V4. They are
of degree -1, 0, and 1 respectively and satisfy various axioms, see [1] for more
details.

A 2-group is a group object in a 2-category [3]. It has a multiplication
p: G? — G, and an associator o : po (ux 1) ~ po (1 x p) satisfying the
pentagon axiom. There are strict and weak versions. If the 2-category is that
of C* Artin stacks, we get the notion of a 2-Lie group. Since Artin stacks
are represented by Lie groupoids, we can think of (strict) 2-Lie group as group
objects in Lie groupoids. Equivalently, these are crossed modules in the category
of smooth manifolds [3].

It is also good to consider weak 2-groups. The classifying space of a weak
2-group contains (up to homotopy) the same amount of information as the 2-
group itself. So we will replace 2-Lie groups with their classifying space. This
also allows for an easy way to talk about n-Lie groups. The following definition
was inspired by discussions with Jacob Lurie:

Definition 1 The classifying space of a weak n-Lie group is a simplicial man-
ifold
-
Xe = (XO<(:X1 é:Xz"')
satisfying Xo = pt, and the following version of the Kan condition:
Let A™7 C OA™ be the jth horn. Then the restriction map

X = Hom(A™, X,) — Hom(A™7, X,) (1)



is a surjective fibration for all m <n and a diffeomorphism for all m > n.

Given an n-Lie algebra, there exists a canonical procedure that produces the
classifying space of an n-Lie group. The main idea goes back to Sullivan’s work
on rationnal homotopy theory [8]. A variant is further studied in [5].

Definition 2 LetV be an n-Lie algebra with Chevaley-FEilenberg complex C* (V).
The classifying space of the corresponding n-Lie group is then given by

(an)m = Hompga (C*(V),Q*(Am))/ ~, (2)

where ~ identifies two m-simplicies if they are simplicially homotopic relatively
to their (n — 1)-skeleton.

Example 1 Let g be a Lie algebra with corresponding Lie group G. A homo-
morphism from C*(g) to Q*(A"™) is the same thing as a flat connection on the
trivial G-bundle G x A™. These in turn correspond to maps A" — G mod-
ulo translation. Two n-simplicies are simplicially homotopic relatively to their
0-skeleton if their vertices agree. So we get

(L9),, = Map(skO(A"), G)/G =G".

Therefore [, g is the standard simplicial model for BG. We can recover G along
with its group structure by taking the simplicial 71 of this simplicial manifold.

Now let us consider our motivating example. Let g be a simple Lie algebra
of compact type (defined over R), and let (,) be the inner product on g such
that the norm of the short coroots is 1.

Definition 3 [2] Let g be a simple Lie algebra of compact type. Its string Lie
algebra is the 2-Lie algebra stv = ste(g) given by

strg = g, stt; =R

and brackets
H =0, [(X1701)7 (X2702 ] = ([X17X2]7O)7
(X1, ¢1), (X2, ¢2), (X5, ¢3)] = (0, ([X1, Xo], X3)).

The string Lie algebra should be thought as a central extension of the Lie
algebra g, but which is controlled by H3(g, R) as opposed to H?(g,R). The
Chevalley-Eilenberg complex of str is then given by

C*(stt) =R ® [g*} ® [A2g* ® R} ® [A?’g* ® g*] & [A4g* o A%g* @R} ®...
Following (2), we study

HomDGA(O*(stt),Q*(A")) = {a € QLA™ g), 5 € Q2(A™;R) }
do+ 3o, 0] = 0,dB + ¢, a, 0] = 0}.

(3)



The 1-form « satisfies the Maurer Cartan equation, so we can integrate it to
amap f: A" — G, defined up to translation. This map satisfies f*(01) = «,
where 01, € Q1(G; g) is the left invariant Maurer Cartan form on G. The 3-form
%[a, a, « is then the pullback of the Cartan 3-form

n= %<[6‘L76.L]79L> € 93(G;R)7
which represents the generator of H3(G,Z). So we can rewrite (3) as

{f:A" = G,BeQ(A")|ds = f*(n)}/G. (4)

The set of n-simplices in fostr is then the quotient of (4) by the relation of
simplicial homotopy relative to the 1-skeleton. Applying this procedure, we
get a simplicial manifold whose geometric realization has the homotopy type of
BString and which is equal to the nerve of the 2-group described in [2]. It is
given by

Juste = [* = Path(G)/G E Map(9A2,G)/G E Map(skhi A%, G)/G - - ] ,

where the tilde indicates that the group Map(ski1A?, G) has been centrally ex-

tended by S ® Hy(skiA?). Moreover, its simplicial homotopy groups are given
by 71 (fostt) = G and ma([fostr) = ST,
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