CATEGORIES

A category is **braided** if it is monoidal and has a braiding $\beta: X \otimes Y \cong Y \otimes X$, natural in X and Y, making the hexagon $(XY)Z \xrightarrow{\beta} (YX)Z \xrightarrow{\alpha} Y(XZ)$ commute, $X(YZ) \xrightarrow{\beta} (YZ)X \xrightarrow{\alpha} Y(ZX)$

and also the version of that axiom with β^{-1} in place of β .

A category is **symmetric monoidal** if it is braided and $\beta^2 = 1$.

A monoidal category is <u>rigid</u> if every object X has left & right duals. A left dual is: $(X^*,e\!:\!X^*\otimes X\to 1,c\!:\!1\to X\otimes X^*)$ s.t. $(1\otimes e)\circ (c\otimes 1)=1,\,(e\otimes 1)\circ (1\otimes c)=1.$ Right duals are defined similarly. Note that being rigid is just a property.

A tensor category is **fusion** if it is rigid, semisimple, and has finitely many types of simple objects.

A category is **balanced** if it is braided and has twists $\theta_X : X \cong X$, natural in X, satisfying $\theta_1 = 1$ and $\theta_{X \otimes Y} = (\theta_X \otimes \theta_Y) \circ \beta^2$.

A category is <u>**ribbon**</u> if it is balanced, rigid, and $ev \circ (\theta \otimes 1) = ev \circ (1 \otimes \theta)$.

A category is $\underline{\mathbf{modular}}$ if it is ribbon and the S-matrix $[\bigcirc j]_{ij}$ is invertible.

STRING DIAGRAMS

Monoidal. planar, strands only go down:

Braided. things are now in 3dim, strands go down, coupons not allowed to rotate:

Rigid. planar, strands may bend up and down, coupons not allowed to rotate:

Balanced. ribbons instead of strands, only down, coupons may rotate around z-axis:

Ribbon. ribbons in 3-space, all 3-dimensional isotopies are now allowed:

