Construction of primary fields

The irreduible positive energy representations H; of LSU(2) are classified by their level £ and the lowest
energy space V; = H;(0)s, an irreducible representation of the constant loops SU(2) of spin 4, a half integer
with 0 < i < £/2. If V is any irreducible representation of G = SU(2), then V = C°(S1, V) has an action
of LG x Rot S with LG acting by multiplication and Rot S? by rotation, rof(#) = f(# + «). There is a
corresponding infinitesimal action of L%g x R which leaves invariant the finite energy subspace V?. We can
write V° = Y V() where V(n) = 2~ ®@ V. Set v, = z"v for v € V. Thus dv, = —nv, (so that 2=7%9)
and Xpvm = (X0)min. Let H; and H; be irreducible positive eergy representations at level £. A map
phi : VetimsH] — HP0 commuting with the action of L°g x Rot S is called a primary field with charge
V. For v C V, we define ¢(v,n) = ¢(vn) : H} — H}. These are called the modes of ¢. The intertwining
property of @ is expressed in terms of the modes though the commutation relations:

[X(n),d(v,m)] = X -v,m +n), [D,d(v,m)] = —mdo(v,m).

Uniqueness theorem. If ¢ is a primary field, then ¢ restricts to a G—invariant map ¢o of V& H;(0) into
H;(0). Moreover ¢ is unigquely determined by ¢g, the initial term of ¢.

We shall only require primary fields of charge 1/2 and 1. Let L,, be the Virasoro operators given by
the Segal-Sugawara construction as quadratic expressions in the X (n)’s. In particular Lo = D + h; on H;
where h; = (5% + j)/ (£ +2). For v € V}, define

O(v,z) = Z d(v,n)z"""°,

where § = h; + hy — h; is the conformsl anomoly of the field. Then

; d .
[LO: @(U= Z) = {Z—CE -+ h.‘i}@(v= Z)
Using the Segal-Sugawara formula for Lo and L,, together with the covariance relation
[X(n)®(v,2)] =2"®(X - v, 2),

the following covariance relation can be deduced (cf Tsuchiya-Kanie, page 320):
ne d
[Ly, @(v,2)] =2 {za + (n+ 1)k } (v, 2).

In my Inventiones paper, I establish that the spin 1/2 primary fields are compressions of complex
fermions, so in particular satisfy an L? bound ||¢(v, f)|| < K||fll2. The same is truc for spin 1 primary
fields which occur as soon as £ > 2. This will emerge below from the coset construction, but we give a
direct proof here. For level 2, the result follows because the irreducible positive energy representations have
spin 0, 1/2 and 1. The real Neveu—Schwartz fermions with values in V3 = g give a primary ficld of spin
1 on the corresponding Fock space Fng, which splits as Hy @ Hq as representation of LSU(2). The real
Ramond fermions with values in V' give a primary field of spin 1 on the corresponding Fock space Fr, which
is isomorphic to Hjj5. Thus at level 2 the spin 1 primary fields are given by real fermions, so in particular
automatically satisfy an L? bound. To prove the same result for £ > 3, there are three types of primary field.

(1) ®(v,2) : H; = Hy—1 for 1 <14 < £/2. In this case the compression of ®(v, 2)@1 : Hi®H;_1 — Ho®H; 1
to a map from H; to H;_; gives the primary field. Here and below the first factors are at level 2 and
the second at level £.

(2) ®(v,2): Hi = Hipq for 0 <4 < £/2—1. In this case the compression of ®(v,z)® 1 : Ho®@ H; — H1 % H;
to a map from H; to H;1; gives the primary field.

(3) ®(v,z): H; — H;for 1/2 < i < £/2—1/2. In this case the compression of &(v, 2)®I : Hy® H; — H1®@H;
to a map from H; to H; gives the primary field. (In fact, identifying V) with g, the initial term is just
X ®@v;— Xvg.)



In Tsuchiya-Kanie and in my Inventiones paper, the braiding properties of spin 1/2 primary fields
was established using the the reduced 4—point function, a function of a complex variable with values in an
auxiliary finite—dimensional space. We now recall this theory and its relation to products ®(u, z)®(v, w).

At level L (either £ or £+ 2), given spin 1/2 primary fields ®;;(v,w) : H; — Hj, ®x;(u,z) : H;j — Hy,
we may form the 4-point function F;(z,w) = (®(u, z)®(v, w)&,n) for lowest energy vectors £ and 7. Then

Fi(zw) = Z (®(u, m)®(v, —m)¢, U)Z_Y’Lz_éwmw_a, = fj(oz_a'w_b_’:

m=>0

where

(0 = Z = (®(u, m)® (v, —m)&, )™,

m=0

The functions f;({) are holomorphic functions for |(| < 1 with values in W = Homg (V12 ® V7 2@V}, Vi) with
G = SU(2). The value at { = 0 gives (®(u,0)®(v,0)§,n), i.e. the map factorising through Vi, @ V; — V},
i 2@ V; — V. These functions and the related functions

where \; = (j°+j —®> —i—3/4)/(L+2), are called reduced four point functions. The f;(z) are defined on
the unit disc with [0,1) removed. They satisfy the Knizhnik—Zamolodchikov ordinary differential equation,
which in this case is equivalent to Gauss’ hypergeometric equation. This equation has the form

!

F2) = A@)f(2),

where

for P,Q operators on W. As shown in section 19 of the Inventiones article, there is a holomorphic gauge
transformation g : C\[1, c0) such that
g rAg—g7'¢ = P/

The solutions of the ODE are then f(z) = g(2)2”’T where T are eigenvectors of P. It follows that the
columns of g(z) are just the solutions f;(z). On the other hand we can similarly choose h(z) with A(0) =T
and

hAh™r —hW'h™1 = —P/2.

(This corresponds to replacing A(z) by —A(z)%.) Then
(hg)" = [P, hgl/>.

The only formal power series solution of this ODE equal to I at 0 is the constant solution I, so that
h(z) = g(z)~!. Taking transposes, the rows of g(z)~ !, i.e. columns of (g(z)~1)* are up to powers of z the
fundamental solutions of k'(z) = —A(z)%k(z). The transport matrix for this ODE is just the inverse of
that for the original one. The fundamental solutions at oo give a gauge transformation equal to I at oo,
transforming A to the singular in A(z) at oc. The computation in the Inventiones paper shows that all the
transport coefficients are non-zero. Note that the analysis there applies equally well to the casc of braiding
between a spin 1/2 and spin 1 primary field.

In particular the functions f;(z) extend analytically to single-valued holomorphic functions on C\ [0, c0).
Now the functions ?j(z_l) satisfy the same ordinary differential equation in the same domain, so there is a
transport relation

fj(z) = chm?m(z_l)'

T



The coefficients have been computed by Tsuchiya-Kanie and me. They are always non-zero and give the
braiding relations. For primary fields smeared in disjoint intervals, this gives a relation

(Prj(u, £)®5i(v, 9)6,m) = Z i @hem (Vs €49) Prmi(us e— 1 F)E, 1),

where _
eu (9) — 619()\1-—/\,,,,).

This braiding relation extends immediately to any finite energy vectors £ and n and hence arbitrary vectors,
so that

(I)kj (’Ll-, f.) (I)J‘l ('U: g) Z ij. (ka (U, eltg)(pm,-; ('U., e._“ f)‘
Similarly the relation implies that in the sense of analytic continuation

((I)kj (us Z)Qj-i(vs w)é-': '77) = Z ij((I’km ('U7 w)‘bm‘i (uv Z)é: 77):

m

where both sides are defined for z, w amd z/w in C\[0, oc). The same method of proof for smeared primary
fields shows that this relation holds for arbitrary finite energy vectors £ and 7 and thus it can be written
simply as

B (u, 2)®5:(v,w) D Chon Do (0, W) Dps (1, 2),

T
in the sense of analytic continuation.
Construction of charge (1/2,1/2) primary fields. Consider @;{z(v, z2)®1: H;®@ FH; ©F. By the coset

construction
Hi@F=EH.® Hia, H; @ F = Hy @ Hjy.
a b

Let I, and P, be the projection onto the summands H, ® H; , and H; ® H; ;. Fix Lo-eigenvectors € € H; ,
and 7 € H;p and consider
id @ wes n(Po®@(v,2)P) : Hy — Hp

where wg ,,(T) = (T§,n). By the uniquencss theorems for primary fields of SU(2), this is a rational power

of z times a spin 1/2 primary field qb;éz(v,z) for LSU(2) at level £ + 2. The precise power of 2 can be

determined from the following formula for the difference of the conformal anomolies of the spin 1/2 primary
fields ®(v, z) and ¢(v, z).

Lemma. AJ/%(0) = A€ +2) + AWIY2 4 (- 1)? - (i — a)?) /2.

Proof. This is a special case of the identity
AL (0) = DL E+2) + AKE | )+ (=) — (i —a)? — (k= 0)2)/2, ()
which is easy to verify directly.
(Note that the version of formula (x) by Palcoux has two sign errors.) It follows that
Pp®(v,2) Py = (v, 2) @ 051y, (1,0) (2) 2™,

where m = m; ; o5 is an integer and
8(z) = O(n)z7""°

is a vertex operator between H;, and H,,. It is easy to check that 8(z) satisfics the covariance relation
for a charge half primary field for the coset Virasoro gencrators. Likewise, using the GKO formula for the
Gy’s, the compatibility relations with the G,’s are immediately verified, so that #(z) is the ordinary part of
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a primary field of charge {1/2,1/2) of the Neveu—-Schwartz algebra, possibly zero. Moreover the value of o
for this primary field is as predicted.
Now
(X(n),®(v,2)] = 2"®(X - v,2)], [X(n),o(v,z)] = 2"d(X - v, z)]

and by coustruction

(Lo, 80, 2)] = (o + gre5)8(0:2), (Lo, 6(0,2)] = (=

Thus by uniqueness ¢(v, z) is proportional to the primary field of spin 1/2 between H, and Hp (if one exists).
But then

d 3

[Ln, ®(v, 2)] = Z"'(Z(—id; +(n+ 1)4(2 T 2))@(’0’ 2), [Ln, d(v,2)] = 2"z + (n + 1)@)@'(’07 z).
It follows that J
[Ln,6(2)] = 2z +(n+ 1)2(£—+®‘(‘£—+—2—))¢(U= z).

Since

N o (16—4) 3
VEIZ TR 2)(f+4) 200+ 4)(€+2)

and the compatibility relation
(Co1/0,6(2)] = 2771216y, 6(2)]

can be verified using the explicit formula for G, in the GKO construction, §(z) is the ordinary part of a
charge (1/2,1/2) primary field between H; , and H; . The value of o follows from the lemma above.

We now use a simplification of Loke’s method to deduce that all the primary fields are non—zero. His
method was inspired by the analysis of Tsuchiya and Nakanishi which related the primary fields of LSU (N M)
at level 1 and their braiding coefficients with those of LSU(N) at level M and LSU(M) at level N. This
simplified analysis applies equally to the coset construction of the Virasoro algebra, permitting monodromy
properties of 4-point functions to be deduced indirectly via the coset construction without using an ordinary
differential equation with regular singular points at 0, 1 and oc.

We start by showing that when non-zero the 4-point functions

F(z,w) = (01,0),.6) (2)0(3,6), 6,00 (W)E, 1)

have the expected properties. Thus if £, 7 are finite energy vectors, these should be a function of the form
2%wP f(z/w) where f(¢) is holomorphic function in C\[0,00). . For the primary fields of LSU(2) this is
known from their work when one of the fields has spin 1/2 and the other is arbitrary (we shall only need spin
1/2 or 1), because it follows from well-known properties of Gauss’ hypergeometric function. An important
additional property is the non-vanishing of the hypergeometric functions F(c, beta,v;z) on C\[1,00) and
their two limits on the cut (1, 00). For the particular values of , 3,+ that arise in the work of Tsuchiya and
Kanie, classical results of Hurwitz and Van Vleck, simplified by Runckel in 1971 (Mathematische Annalen,
191, 53-58), guarantee these coefficients do not vanish. We will in fact not use this property, but instead a
holomorphic gauge transformation explained in the Inventiones paper.

We shall derive in detail these properties for charge (1/2,1/2) primary fields. The same techniques
can be used to proved the existence, GKO construction of charge (0,1) primary fields and their braiding
with spin (1/2,1/2) primary fields. Since the whole pattern of the proof and the results used are practically
identical, we shall only give an outline of the details.

The method of Loke rests on showing that if (¢, a), (4,b) occurs with |i —j| = 1/2 and |a —b| = 1/2, then
¢5252(v, z) necessarily oceurs, L.e. () (i,a)(2) # 0. We may assume j = i+ 1/2 (because of the behavious of
spin 1/2 primary fields under taking adjoints).

If neither of gbéf(v, z) with b = a & 1/2 occurs, then (®(v,z) ® I)u = 0 for a finite energy vector u in
H; ® . The commutation relations of ®(v, z) with operator X (n) imply that (®(v,z) ® Iu’ = 0 if v’ is
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obtained by applying operators X (n) @ I or I ® ¥(z,n) to u. Since u is cyclic for these operators, it follows
that ®(v, z) =0, a contradiction. So (b;iz(’u, z) occurs where b=a—1/20rb=14—1/2.
We write
Dji(v,2) = Z Bra (v, 2) ® O 1), (i,0) (2)5

where the second factor is a multiple of a charge (1/2,1/2) primary field, possibly zero. Now in general

(Prj(u, 2)P5(v,w)e @ Erer Mo R i) = Z(@'cb(u, 2)Bpa (v, 0)Ea, Ne ) (O ke, (3,5) (2)0(5,8), (1.0) (W)Eivar €k )
b

Each term has values in W = Homc(Vl 12®@V1,2@V;, Vi). We can write this as a relation for reduced 4-point

functions
=Y f(Ohi(Q)-

Here a priori h;(¢) is a formal power series convergent in || < 1 times a rational power of . F; and f; are
holomorphic functions from C\[0, oc) into W. If we apply g(zeta)™! we get

9(OTIFH(Q) = Y ¢ b (0)5a(0)Rj,6(C),

for constants pp. It follows immediately that the hj;’s arc holomorphic on C\[0,00). Thus all 4-point
functions in the #’s, if they are arise through the coset construction, are holomorphic for z, w, z/w in C\ [0, co).
In fact we get a formula for h;(¢):

hsp() = C¢** (9(¢) T Fi(C), ¢cb(0)6a (0)), (x#)

for some constant C # 0.

This formula immediately implies an analogue of the duality for braiding established by Tsuchiya and
Nakanishi. The fields charge (1/2,1/2) 8,y ; .(z) have braiding coefficients given by the product of the level
¢ braiding coefficients for spin 1/2 and the inverse of the level £ + 2 braiding coefficients for spin 1/2. All
these coefficients are non—zcro, even if some of the terms ;). o(z) vanish.

Resuming the proof of constructibility, we have to show that this can never happen. Suppose that

0(i+1/2,b),(£,a) (Z) = 0. Then

0 = 0(5,0),(+1/2.6) (2)0(i+1/2,8), (4,a) () ZIJ; Pi,a), ) (W)0,0) (2),

where all the coefficients are non—zero. This is a contradiction, since the right hand side is not identically
zero. It follows that if |a — b] = 1/2, then the term ¢, (z) appears and hence also Oir1/2,8),6,0)(2), 1e. all
charge (1/2,1/2) primary fields can be constructed by the coset construction.

A clearer way to preseent this is to note that if ¢pa(2) and 0(; ) (i,a)(z) appear, then by taking adjoints
so docs 8 q).(5,6)(2). But then using the formula () for the reduced 4-point function associated with
0(i.0),(5.6)(2)0(5,8).(,0)E, ), We sce that all possible terms appear on braiding. Consequently if ¢y, (z) occurs
with b =a +£1/2 so does a F 1/2, as required.

For charge (0,1) primary fields, we consider this time the compressions of the Neveu-Schwarz fermion
field I ® (v, z). It commutes with the field ®(u,2) ® I. The same principles can be used to compute the
braiding with charge (1/2,1/2) primary fields and to give formulas for the reduced 4—point function

1/2,1/2) 4(0,1)
(Otie,c, 0.5y (2) 2 /)9Jb) (i) (W)E; 7).

Again all the braiding cocfficicnts are non-zero and, if some 9(1 o a)( z) vanishes, as before the braiding
relation for the above product gives a contradiction.

This complctes the proof of the existence of charge (1/2,1/2) and (0,1) primary fields. The braiding
coeflicients betwen a charge (1/2,1/2) primary field and one of these two types of field are always non—
zero. The charge (1/2,1/2) ficlds are compressions of spin 1/2 primary fields of level £, and there satisfy
L? bounds. The charge (0, 1) fields are compressions Neveu-Schwartz fermions and there satisfy L? bounds.

5



The braiding properties of smeared field follow immediately by the method of convolution and the transport
properties of reduced 4—point functions.

Irreducibility for LSU(2). We have already seen that in the vacuum sector the local algebra 7o (L;G)" is
the weak operator lincar span of chains of products of spin 1/2 primary fields concentrated in I. If I; and
I are the intervals obtained by removing an internal point from I, then each spin 1/2 primary field can be
written as the sum of two spin 1/2 primary fields concentrated in [; and I. Thus the chain of primary ficlds
is a linear combination of a product of primary fields concentrated in either I; or I5. But fields concentrated
in I; satisfy braiding relations with fields concentrated in Iy. Thus mo(L;G)"” is the weak operator linear
span of products

004, By *** Qiibigy Djy -+ bj0, (*)

with apg concentrated in I; and b, in Ip.

We may assume without loss of generality that the internal point removed is 1 and that —1 ¢ I. Thus
the modular group U, leaves I invariant for £ > 0 and as ¢ — +oc contracts I to the point 1. Let a = a; ;1,2
be a ficld concentrated in I;. Applying a rotation, the field

b="b;i_1/2= Rea;;_1/2R}

is concentrated in I3. The following is a weak form of the operator product expansion of primary fields:

Theorem. After a possible adjustment in 0, Uab* U} tends weakly to a positive multiple of the identity.

Proof. We start by proving two simpler weak forms of operator product expansions.

Lemma 1 (case ¢ = 0 of theorem). Let a = ap,1/2 and b = Rgaop /2Ry, so that a is concentrated in I
and b in Iy. Then by the Reeh-Schlieder argument, o small variation of 8 will guarantee that (ab*Q,Q) # 0,
in which case Uiab*U;* tends weakly to o positive multiple of the identity, namely (ab*Q, ).
Proof. In fact let

F(e'¥) = (aR,b*R,Q,Q) = (aR,b*Q, Q).

By the positive energy condition the right hand side is the continuous boundary value of a holomorphic
function on the open unit disc. On the other hand if F' vanishes on a small arc on the unit circle near ¢ = 4,
it must vanish identically (by an application of the Schwarz reflection principle). But then it vanishes for
w = 0, so that (aa*Q,Q) = 0. Hence a*{} = 0. Since a* commutes with L;G and the vacuum vector is a
cyclic vector for this subgroup, it follows that a* = 0, so that ¢ = 0, a contradiction.

The operators Usab*Uy are uniformly bounded. Let (¢,) be a sequence with ¢, — oc. Passing to a
subsequence (s,), we may assume that U, ab™U; has a weak limit T'. If .J, and K, are intervals increasing to
the two halves .J and .J¢ of S*\{=1}, then T evidently commutes with L; G and Lg, G. Hence it commutes
with M = no(L;G)" and N = wg(Lj-G)". So

TeM NN =MnM=C,
by Haag duality and factoriality of M. Thus T is a scalar. On the other hand
(U:ab™UQ, Q) = (ab*Q,Q) # 0,

since Uy fixes the vacuum vector Q. Hence T = (ab*Q2, Q). Since this limit os independent of the subsequence
(), the lemma follows.

Lemma 2. If a = a1, is concentrated in Iy and b = bys ¢ in I, then Usay 1/2b1/2,0Us tends weakly to
zero.

Proof. Again we take a sequence (f,) with ¢, — 4-co and pass to a subsequence s, with X, = U, abU
weakly convergent to V say. If £ is any finite cnergy vector in I{;, then

(XnQ,€) = (Us,2,€) — 0.
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Indeed Hy breaks up as a direct sum of positive energy irreducible representations of a central cyclic extension
G of SU(1,1); each is a discrete series representation of G, so can be realised as a subrepresentation of L%(G)
and thus has matrix coefficients tending to zero at co.

In particular VQ = 0 and by the same argument as in Lemma 1, this implies that V = 0. Since this
limit is independent of the subsequence, the result follows.

Remark. 1. The technique used here is a particular case of a representation theoretic result in ergodic
theory going back to Gelfand-Fomin, Mautner, Moore and Howe: if a unitary representation of a connected
semisimple group with finite centre has no fixed vectors, then its matrix coefficients vanish at oc. (A proof
using direct integral decompositions can be found in Zimmer’s book and an elementary proof has been given
by Scott Adams.)

2. Both of these lemmas could be proved directly using 2-point and 3-point functions which arc casy to
determine without using differential equations.

We now claim that linear span of chains

Ci,i—1/2Ci~1/2,i—1 """ C1/2,0T0 (9)Q

with the spin 1/2 primary fields ¢,’s and g localised in I€ is dense in H;. In fact, by the covariance relation,
these veetor have the form
7"1‘(9)¢¢,z‘~1/2¢i-1/2,£-1 T 61/2,0Q-

A simple Reeh—Schlieder argument shows that the linear span of the vectors ¢; ;_1/9¢;i—1/2,i—1 - C1/2,0) is
the same as that of the vectors without restriction on the support. Taking the product of zero modes yields
a vector in H;(0), on which the ;(g)’s act cyclically by another application of the Reeh—Schlicder argument.

Now a = a;_1/2,; be a field concentrated in I; and b = b;..;/2; = Rga;_1/2,:R} be concentrated in I.
Set d;;_1/2 = a”, also a spin 1/2 primary field supported in I;. By the braiding relations

Ut(a*b)U:ci,i—l/zcz'——l/Q,i—l T Cl/z,oﬁo(g)Q
= va(di,i—]/’.Zbi—l/Z.i)U:ci,i-—l/Zci—1/2,72—1 e '6‘1/2,07Fo(g)Q
= )‘Ci‘i—l/2ci—1/2,i—1 Tt C1/2,0M0 (Q)UL(do,l/zbl/z,o)U;Q
+ (D 3CigCir gz -+ Ci0,1)Usldy,1/2b1/2,0) U7 2.

For any sequence (¢,.) such that Uy, (a*b)U; converges weakly to T as t, — oo, we have by Lemmas 1 and 2

Tesi_179€i-172,i-1 - C1/2,0m0(g)2

= kci,f—1/2f3i—1/2,-;—1 ©C1/2,0M0 (9)82,

for some constant k # 0. Since the linear span of the vectors ¢; ;_1/2¢;i—1/2,i—1" --c172,0m0(g)Q is dense, it
follows that T' = kI. Since k is independent of the sequence (t,,), it follows that Uy (a*b)U} — kI weakly as
t— 00.

Corollary (von Neumann density). w;(L;G)" = n;(L;,G)" v m;(L1,G)".
Proof. By local equivalence, it suffices to prove this when j = 0, i.e. for the vacuum representation. A
typical element has the form (¥). By the theorem this can be approximated by a weak operator limit of
clements

(0, Qiyiy *** Qi i@ i s2biy 12,0341 Dgaga - b0,
so that the index ¢ has been changed to i — 1/2. Continuing in this way we can in turn reduce i — 1/2 to
i — 1 and so on, until eventually the approximation is by chains with 7 = 0. But when i = 0, the chain is
a product of two chains for [; and I, each starting and ending at the vacuum representation. This is the
product of an element of my(Lr, G)"” and an element of 7;(L, G)"”. The result follows.

Corollary (irreducibility). The subfactor given by the failure of Haag duality in H; is irreducible.
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