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CHAPTER 1

The Enveloping, Affine and Loop Algebras of
SL(2)

1. The Lie Algebra sl2

1.1. Definition. The Lie Algebra sl2 can be presented as the set of trace 0,
2× 2 matrices:

sl2 =
{[
a b
c −a

] ∣∣∣∣ a, b, c ∈ C
}

Then

e =
[
0 1
0 0

]
, f =

[
0 0
1 0

]
h =

[
1 0
0 −1

]
form a basis of sl2. Their lie algebra structure then is given by taking the com-
mutator in multiplication and yields the identities [h, e] = 2e, [h, f ] = −2f, and
[e, f ] = h.

1.2. Bilinear Form. Now, there exists a bilinear form (·, ·) on sl2 given by
(x, y) = trC2(xy). This form is symmetric, non-degenerate and invariant under the
bracket: ([x, y], z) = −(y, [x, z]). For example:

(e, e) =tr e2 = 0 = (f, f)(1.1)

(e, f) =tr ef = 1 = (f, e)(1.2)

(h, h) =tr h2 = 2(1.3)

(h, e) =tr he = 0 = (hf)(1.4)

so the dual basis given via (·, ·) has f dual to e, and h
2 dual to h.

1.3. Casmiur Operator and Finite Dimensional Representations. The
next three results are elementary and will not be proven. Let g be a Lie Algebra
with basis xi and dual basis xi for i ∈ I some indexing set. Let V be a vector space
and let ρ : g→ End (V ) be a representation of g. Then the Casmiur operator of ρ
is

C(ρ) :=
∑
i

ρ(xi)ρ(xi) =
∑
i

xixi = xixi

where the first equality comes from abuse of notation and the second comes from
Einstein’s summation convention:

1.3.1. Proposition. If ρ is an irreducible representation of g and if C(rho) = 0
∀x ∈ g then C(ρ) acts as a scalar on V .
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6 1. THE ENVELOPING, AFFINE AND LOOP ALGEBRAS OF SL(2)

1.3.2. Proposition. All finite dimensional representations of sl2 are completely
reducible.

1.3.3. Proposition. For all n ∈ N there exists a unique representation Vn of sl2
of dimension n+ 1 given by Vn ∼= Cn[x, y] (- the set of polynomials in two variables
the sum of whose degree’s is n) with

e 7→ x
∂

∂y
f 7→ y

∂

∂x
h 7→ x

∂

∂x
− y ∂

∂y

It is a simple check that with the basis xiyn−i for i = 0 . . . n this is a n + 1
dimensional representation of sl2. For Example, V1 =< x, y >= C2.

1.4. Character Formula. From here on out, g = sl2. Let V be a represen-
tation of V . Then V is the direct sum of eigen spaces of h: V = ⊕λ∈CV[λ] where
V[λ] is the λ eigen space of h aka the weight space of λ and C is understood to be
the 1-dimensional dual vector space of h, ie h∗ = Ch.

Now, the character formula is ch(V ) =
∑
λdim V[λ]e

λ ∈ Zh∗ where eλ is a
formal symbol chosen for the fact that eλ1eλ2 = eλ1+λ2 . It can be shown that for
an exact sequence of g-modules

0→ U → V →W → 0

the splitting of the sequence (true for any sequence of vector spaces) gives us
ch(V ) =ch(U)+ch(W ). It can also be shown that if U, V are g-modules that
ch(U ⊗ V ) =ch(U)·ch(V ).

Now, let V = Vn be as above and notice that V[n−2i] is generated by xn−1yi and
so is 1-dimensional. Then for the weight space decomposition V = V[n] ⊕ V[n−2] ⊕
. . .⊕ V[−n] give us that

ch(V ) =
n∑
i=0

ch(V[n−2i]) = en + en−2 + . . .+ e−n =
en+1 − e−(n+1)

e1 − e−1

Our last result for finite dimensional representations of g is the Clebsch-Gordau
Rule:

Vm ⊗ Vn ∼= Vm+n ⊕ Vm+n−2 ⊕ . . .⊕ V|m−n|
As an example of the above we can compute Vm ⊕ V1 = Vm+1 ⊕ Vm−1

2. The Affine Lie Algebra ŝl2

2.1. The Loop Algebra of sl2. Let g = sl2. Then the loop algebra of g is
the Laurant series in z with g coefficients: Lg := g[x, x−1]. For f(z), g(z) ∈ Lg,
the bracket [f, g](z) = [f(z), g(z)] defines a Lie Algebra structure on Lg. Using
the notation x(n) = x ⊗ zn for x ∈ g and n ∈ Z we can rewrite the bracket as
[x(n), y(m)] = xzn · yzm − yzm · xzn = [x, y]⊗ zn+m = [x, y](m+ n).

Now, let g = Cf ⊕ Ch ⊕ Ce by the standard decomposition with [h, e] = 2e,
[hf ] = −2f . Then if we look at the action of ad(h) = [h, ·] on g then Cf,Ch and
Ce are eigen spaces of weights −2, 0 and 2 respectively. Similarly, the loop space
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decomposes as Lg = Cf [z, z−1] ⊕ Ch[z, z−1] ⊕ Ce[z, z−1] with ad(h) again acting
on these spaces as -2,0, 2 eigen spaces respectively. However, unlike in the above
case, each of these eigenspaces are infinite dimensional.

2.2. The Extension of Lg by a Derivation. First, let d be the derivation
of Lg given by dx(n) = nx(n) (ie d = z ∂

∂z ). Then d satisfies the Libnetz Rule:
d[f, g] = [df, g] + [f, dg] since

d[x(n), y(m)] = (n+m)[x(n), y(m)] = n[x(n), y(m)]+m[x(n), y(m)] = [dx(n), y(m)]+[x(n), dy(m)]

and d commutes with addition. Now, let g̃ := Lg o Cd be defined to be the Lie
Algebra that is Lg⊗Cd as a vector space with Lg ⊆ g̃ as a subalgebra in the obvious
way and the bracket on Lg extended by the relation [d, d] := 0 and [d, f ] := d(f)
and bilinearity.

2.2.1. Exercise. For a general Lie algebra g, show that the algebra g̃ construed
from g as above is a Lie algebra.

Lets look at decompositions of g = sl2. First, g̃ = g̃− ⊕ Ch ⊕ Cd ⊕ g̃+ where
g̃+ = zg[z]⊕ Ce[z] and g̃− = z−1g[z−1]⊕ Cf [z−1]

Now, Ce[z, z−1] = ⊕nCe(n). Notice that each Ce(n) is an eigenspace with
eigenvalue 2 w.r.t. h and and eigenspace with eigenvalue n w.r.t. d. Similar results
hold for Cf [z, z−1] and Ch[z, z−1] so we get the following decomposition of g̃:

g̃ =
⊕

t∈{−2,0,2}, n∈Z

g̃(t,n)

where g̃(t,n) is a eigenspace t w.r.t. h and n w.r.t. d. Note that each g̃(t,n) is finite
dimensional (in fact 1-dimensional unless t = n = 0 in which case g̃(t,n) = Ch⊕Cd).

Now, since Lg ⊆ g̃, any representation of g̃ restricts to a representation of Lg

in the natural way but there exists representations of Lg which do not extend to a
representation of g̃.

2.2.2. Exercise. Show that the representation Va given in Definition 1.1 does
not extend to a representation of g̃.

Now then, what is an example of of a g̃ representation? Let V be a finite
dimensional g module under ρ. Then V (z) = V [z, z−1] (=: LV ) is acted on by Lg

by x(n) 7→ Xzn = ρ(x)zn and is also acted on by d by d 7→ D = z d
dz . Then

[D,X(n)](a0 +a1z+ . . .+akz
k) =

(
z
d

dz
Xzn −Xznz d

dz

)
(a0 +a1z+ . . .+akz

k) =

nXa0+(n+1)Xa1z
n+1+. . .+(n+k)Xakzn+k−(Xa1z

n+1+2Xa2z
n+2+. . .+kakzn+k) =

= nXa0 + ((n+ 1)Xa1z
n+1 −Xa1z

n+1) + . . .+ ((n+ k)Xakzn+k − kakzn+k))

= nXa0 + nXa1z
n+1 + . . .+ nXakz

n+k =

nX(z)(a0 + a1z + . . .+ akz
k)

so [D,X(n)] = nX(n) as required and so this defines an action of g̃ on LV . There-
fore any finitely generated g module gives us a representation of g̃.
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3. The Affine Kac-Moody Algebra ĝ

From physics, we want to study the algebra g̃ perturbed by a central extension
to what is called the Affine Kac-Moody Algebra.

3.1. Central Extensions. Given a Lie Algebra L, a central extension of L is
a lie algebra L̂ such that

0→ a→ L̂→ L→ 0

where a ∈ Z(L̂) is an abelian subgroup of L̂.

3.1.1. Example: The Heisenberg Algebra H is the algebra generated by p, q, z
such that [p, q] = z, [z, p] = 0 = [z, q]. z is a central element of H and H is a
central extension of C2:

0→ Cz →H → C2 → 0

Where C2 is generated by p̄, q̄ s.t. [p̄, q̄] = z = 0. It can be seen that H is the
algebra generated by p = d

dx , z = 1 and q = x.

Now, as a vector space a central extension is simply L̂ = L ⊕ a since short
exact sequences of vector spaces split. For a, a′ ∈ a, x, y ∈ L the lie algebra
structure is given by [a, a′]ˆ = 0 since a is abelian, [a, x]ˆ = 0 since a is central and
[x, y]ˆ = [x, y] +B(x, y) where B(x, y) ∈ a.

Since [·, ·]ˆ is skew symmetric, B : L∧L→ a. We call B a 2-cocylce on L with
values in a if

B([x, y], z) +B([y, z], x) +B([z, x], y) = 0

3.1.2. Exercise. B defines a Lie algebra structure on L⊕ a.

Assume that B is a skew symmetric 2-cocycle. Then we have a Lie Algebra
structure on L⊕ a given by a central extension of L by a.

Now, let j : L → L̂ ∼= L ⊕ a be a map into L̂ where j(x) = x ⊕ A(x) and
A(x) : L→ a.

3.1.3. Exercise. Show that B′(x, y) = B(x, y) +A([x, y]) is a 2-cocycle.

Similarly, we will call such a map A([x, y]) a 2-coboudry.
3.1.4. Exercise. Show that a 2-coboundary is always a 2-cocycle.

Then we define H2(L, a) to be the 2-cocylces modulo the 2-coboundries.
3.1.5. Claim: H2(L, a) classifies the central extension of L by a..
3.1.6. Definition. Given two central extensions, an isomorphism of central ex-

tensions is a map φ such that the following commutes:

0 → a → L̂ → L → 0
‖ ↓ φ ‖

0 → a → L̂ → L → 0

We have seen above that to each central extension of L by a we can assign an
element of H2(L, a) given by the image of the map B.

3.1.7. Exercise. Show this map is an isomorphism..
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3.2. Affine Kac-Moody Algebra. We now come to the title of this section:
L̂g is the central extension of Lg by C with B(x(n), y(m)) := nδn+m,0(x, y). We
begin by showing that B is a 2-cocylce. First, forx(n), y(m) ∈ g̃, B(x(n), y(m)) is
skew symmetric since since it is only nonzero if m = −n. But if m = −n then for
B(x(n), y(m)) = n(x, y) = −(−n(y, x)) = B(y(m), x(n)) as required. The other
property of 2-cocycles is satisfied as follows: for x(n), y(m), z(p) ∈ g̃,

B([x(n), y(m)], z(p)) +B([y(m), z(p)], x(n)) +B([z(p), x(n)], y(m)) =

B([x, y](n+m), z(p)) +B([y, z](m+ p), x(n)) +B([z, x](n+ p), y(m)) =

= (n+m)δn+m+p,0([x, y], z)+(m+p)δm+p+n,0([y, z], x)+(n+p)δn+p+m,0([z, x], y)

In this last equation, clearly if n + m + p 6= 0 then the above is 0. Assume n +
m + p = 0. Then, since (·, ·) is symmetric and satisfies ([x, y], z) = −(y, [x, z]),we
have the identity’s ([y, z], x) = −(z, [y, x]) = (z, [x, y]) = ([x, y], z) and similarly
([z, x], y) = ([x, y], z) so the above becomes

= (n+m)([x, y], z) + (m+ p)([y, z], x) + (n+ p)([z, x], y)

= (n+m)([x, y], z)+(m+p)([x, y], z)+(n+p)([x, y], z) = 2(n+m+p)([x, y], z) = 0

by the assumption that n+m+ p = 0.

Then L̂g = Lg ⊕ C as a vector space with [x(n), c]ˆ = 0, [x(n), y(n)]ˆ =
[x, y](n+m)+nδn+m,0(x, y)c. Let d be a derivation with d(x(n)) = nx(n), d(c) = 0.
Then d is a derivation of L̂g: (by linearity of the bracket and the fact that c is
central, we only have to check for g1, g2 ∈ Lg)

d[x(n), y(m)]ˆ = d([x, y](n+m)) + d(nδn+m,0(x, y)c) = d([x, y](n+m))

= (n+m)[x, y](n+m)) = [dx(n), y(m)] + [x(n), dy(m)]

so d acts on L̃g and so we can define the Kac-Moody Algebra g̃ := L̃g o Cd with
[d, f ]˜= d(f).

4. Inner Products

We will now consider the extension of the bilinear forms on g to our new Lie
Algebras. First, there is a natural extension of any form (·, ·) : g ⊗ g → C to
< ·, · >: Lg⊗Lg→ C[z, z−1] by letting < x(m), y(n) >= (x, y)zn+m and extending
linearly. Taking (·, ·) to be the inner product on g we can define the following inner
product on Lg, namely, (p, q) =Res< p, q > /z.

4.0.1. Exercise. Prove the following:

(1) (x(m), y(n)) = δm+n,0(x, y)
(2) On Lg, (·, ·) is a nondegenerate bilinear form.
(3) (·, ·) is invariant under the bracket

Then

(x(n), y(m)) = Res
< x(n), y(m) >

z
= Res(x, y)zn+m−1 = (x, y)δm+n,0
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since Reszn+m−1 6= 0 iff n+m− 1 = −1 by definition. Its clear than that (·, ·) is a
nondegenerate bilinear form: if p, q, r ∈ Lg are of the form p = . . .+ p−1z

−1 + p0 +
p1z + . . .

(c1p+ c2r, q) = Res
< c1p+ c2r, q >

z
= Res

<
∑
i c1piz

i + c1riz
i,
∑
i qiz

i >

z
=

Res

(∑
i

∑
j < c1piz

i + c1riz
i, qjz

j >

z

)
= Res

(∑
i

∑
j(c1pi + c1ri, qj)zi+j

z

)

= Res

∑
i

∑
j

δi+j,0(c1pi + c2ri, qj)

 =

(∑
i

(c1pi + c2ri, q−i)

)
= c1

∑
i

(pi, q−i)+c2
∑
i

(ri, q−i)

= c1(p, q) + c2(p, q)

where the last equality can be gotten by reversing the beginning of the argument.
Linearity in the second term is the same computation. To see that Lg is nondegen-
erate simply notice that for any p ∈ Lg, if pk 6= 0 for some k then there exists a y
such that (pk, y) 6= 0 by the nondegeneracy of the inner product on g and

(p, y(−k)) =
∑
i

δi−k,0(pi, y) = (pk, y) 6= 0

Finally, let’s check that (·, ·) is invariant under the bracket:

([x(n), y(m)], w(k)) = ([x, y](n+m), w(k)) = δn+m+k,0([x, y], w) =

−δn+m+k,0(y, [x, z]) = −(y(m), [x(n), z(k)])

Therefore (·, ·) is indeed an inner product on Lg.

The question now is, can we extend such an inner product to be an inner prod-
uct on g̃? and the answer is no: Suppose we could, then since c is central, if x, y ∈ g̃,
(c, [x, y]) = −([x, c], y) = 0 by invariance of inner product with respect to brackets.
Therefore c is perpendicular to anything that is a bracket; but [g̃, g̃] = g̃ so c ⊥ [g̃, g̃]
implies that c ⊥ g̃ so (·, ·) cannot be nondegenerate. Therefore we cannot extend
an inner product on g to an inner product on g̃.

We can, however, extend it to an inner product on ĝ by the following: (p, q) :=Res<
p, q > /z as before for p, q ∈ Lg and (c, g̃) := 0 as required by the argument above
so let (c, d) := 1 so that c isn’t perpendicular to everything in ĝ. Finally, since for
m 6= 0,

(d, x(m)) =
(d, [d, x(m)])

m
= − ([d, d], x(m))

m
= 0

and for m = 0, x, y ∈ g,

(d, [x, y]) = ([d, x], y) = (0, y) = 0

so (g, Lg) must be 0; we also let (d, d) = 0. This form is nondegenerate by con-
struction.

4.0.2. Exercise. Show that the above construction is a non-degenerate, invari-
ant, bilinear form on ĝ.
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4.1. Structure and Presentation of ĝ. To determent he structure of ĝ it
is useful to look at is center which we will denote ĥ. Then ĥ := Ch⊕Cc⊕Cd ⊆ ĝ.
Then ĝ = ĥ⊕λ ĝλ for all λ that are joint eigen values of ĥ, ie eigen values of all h,
c and d. We will use this too say that ĝ ”looks like” sl3.

5. Root Systems

Fo now, let g = sln and let h ⊆ g be the abelian subalgebra of diagonal matrices.
Then g decomposed under the action of h. Now, we call x ∈ g a eigen vector of h if
there exists λ ∈ h∗ such that for all h ∈ h, [h, x] = λ(h)x. Now, if Ekl is the matrix
with a 1 in the k’th row and l’th column, it is a simple calculation to see that

[Eii, Ekl] = (δik − δil)Ekl

So, if h is a diagonal matrix and θk ∈ h is the Kronecker delta wrt Ekk then
[h,Ekl] = (θk(h) − θl(h))Ekl so the joint eigenvalues of g wrt h are {θk − θl}k 6=l.
Then the eigen vectors corresponding to these eigen values are precisely the Ekl
and

5.0.1. Proposition/Defintion.

g = h⊕
⊕
k 6=l

CEkl

where Ekl is the weight space of θk − θl. From here on we will denote the set
of nonzero roots of g by Φ = {θk − θl}k 6=l ⊆ h∗\{0}, the set of positive roots
{θk− θl}k<l by Φ+ and the set of negative roots by Φ− = −Φ+ = {θk− θl}k>l. We
note that Φ+ is closed under addition and that Φ = Φ+ t Φ−. Finally, the simple
roots ∆ ⊂ Φ+ are the set of indecomposable element of Φ+.

Let η± =
⊕

α∈Φ±
gα ⊂ g be the nilpotent upper and lower subalgebra, ie, given

a matrix representation of g we would have in block form
. . . η+

η

η−
. . .


Then it is clear that just like breaks up as the direct sum of its center and its
nilpotent parts as sl2 = Cf ⊕ Ch⊕ Ce, in general g = η− ⊕ h⊕ η+.

6. Decomposition of g to Copies of sl2

6.0.2. Definition. We can define an inner product on g the same way as before,
by (x, y) =tr(adxady). Since this inner product is nondegenerate it induces an
isomorphism between h and its duel space. Restricting this isomorphism to the roots
we get a map Φ 3 α 7→ tα ∈ h such that α(t) = (tα, t) ∀t ∈ h. Let hα := 2tα

(α,α)6=0
∈ h

denote the dual root to α.
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6.1. Theorem. (Serre) g decomposes into a (possibly infinite) number of
copies of sl2 and is presented as {ei, fi, hi} subject to

[hi, hj ] = 0(6.1)

[hi, ej ] = aijej(6.2)

[hi, fj ] = −aijfj(6.3)

[ei, fj ] = δijhi(6.4)

ad(ei)1−aijej = 0 = ad(fi)1−aijfj for i 6= j(6.5)

Proof: Let α ∈ Φ. The ∀x ∈ gα and ∀y ∈ g−α, [x, y] = (x, y)tα so there exists
eα ∈ gα and fα ∈ g−α such that [eα, fα] = hα. Now,

[hα, eα] = α(hα)eα =
(

2α(tα)
(α, α)

)
eα =

(
2(α, α)
(α, α)

)
eα = 2eα

and similarly, [hα, fα] = −2fα so by sending f 7→ fα, e 7→ eα and h 7→ hα we have
an embedding sl2 ↪→ g. Then for each positive root we have a copy of sl2 denoted
slα2 ⊆ g.

Now, for α = θk − θl ∈ Φ, let eα = Ekl, fα = Elk and hα = Ekk − Ell; in
addition for any simple root αi ∈ ∆, let ei = eαi , fi = fαi , hi = hαi . Then

[hi, ej ] = αj(hi)ej =
2(αi, αj)
(αi, αi)

ei = aijei

where aij ∈ Z. In fact, aii = 2 and aij ≤ 0 for i 6= j. For example, for sln,

(aij) =


2 −1 0

−1
. . . . . .
. . . . . . . . .

0 −1 2


We have now shown that g is generated by {ei, fi, hi} where for each i f,ei, hi
generate a copy of sl2. We will now show that the relations hold. (1)-(3) are
obvious, as for (4), if x ∈ gα and y ∈ gβ then [x, y] ∈ gα−β so [ei, fj ] ∈ gαi−αj = 0
since all roots of g are either strictly positive or strictly negative combination of
simple roots. If i = j then [ei, fi] = hi by the relations for sl2.

For (5), assume again the i 6= j (the case i = j is trivial). Then by (3) and
(4), fj ∈ V−αij (sl

α
2 ) so f is sitting in a representation of sl2, (4) give us that f is

the highest weight vector in this representation so −fj is the lowest wight vector
in this representation. But this is the same as saying that ad(fi)1−aijfj = 0. A
similarly argument holds ej .

Therefore g decomposes into the direct sum of copies of sl2 indexed by the
simple roots.

6.2. The Decomposition For ĝ. Lets return to the case g = sl2. Recall that
ĥ = h⊕Cc⊕Cd and let Φ = {α,−α} with α ∈ h∗, α(h) = 2 be the root system of
g. Then the above decomposition yields

ĝ = ĥ
⊕

(α,n)∈Φ×Z

ĝ(α, n)
⊕
n∈Z×

ĝ(0, n)
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A bit of explanation is needed. The above roots come from the affine root system
Φ̂ = Φ× Zδ t {0} × Z where δ ∈ ĥ is a linear form dual to d, ie δ(d) = 1, δ(c) = 0,
δ(h) = 0. One way to think of this decomposition is as an infinite ”matrix”

graphichere

where each box is a copy of sl2 (or more generally sln). We call the elements labeled
+ positive roots and denote them Φ̂+ and those labeled − negative roots and denote
them Φ̂−. Then Φ̂+ = {Φ t 0} × N∗δ t {α} × {0 · δ} and Φ̂−.

The simple roots of Φ̂+ come in two flavors. Looking at the n = 0 and n = 1
boxes we have simple roots α1 = (α, 0) and α0 = (−α, 1). Outside of these boxes
we have similar simple roots: for all n ≥ 0, (α, n) = n(−α, 1) + (n + 1)(α, 0),
(−α, n) = n(−α, 1) + (n− 1)(α, 0) and (0, n) = n(−α, 1) + n(α, 0).

Now, recall that we have a form (·, ·) on ĝ and that

(·, ·)|ĥ = (·, ·)h ⊕
(

0 1
1 0

)
For α̂ ∈ ĥ∗ → tα̂ ∈ ĥ ; hα̂ = 2tα̂

(α̂,α̂) so for (α, n) = ±α+ nδ ; ±h+ nc and

(α̂, α̂) =
{

2 Real Roots ± α+ nδ
0 Imaginary Roots nδ

}
Now, the simple roots are real. Let h1 = h, h0 = −h+c and let α1 = (α, 0), e1 = e,
f1 = f and h1 = h; finally, let α0 = (−α, 1), e0 = f(1), f0 = e(−1) and h0 = −h+c.

6.2.1. Exercise. Check e0, f0 and h0 form an sl2 triple.

Finally, we can calculate the affine Cartan matrix to be

aij =
2(α̂, α̂)
(α̂, α̂)

=
(

2 −2
−2 2

)
= Â

The affine Cartan matrix.

6.3. Theorem. g̃ is presented on {ei, fi, hi}i=0,1 with

[hi, hj ] = 0(6.6)

[hi, ej ] = aijej(6.7)

[hi, fj ] = −aijfj(6.8)

[ei, fj ] = δijhi(6.9)

ad(ei)1−aijej = 0 = ad(fi)1−aijfj(6.10)

Note, this is not ĝ because this only has a 2 dim Cartan subalgebra, indeed ĝ
is presented as above but with {ei, fi, hi, d}i=0,1 and the additional relations

[d, hi] = 0(6.11)

[d, e1] = [d, f1] = 0(6.12)

[d, e0] = e0(6.13)

[d, f0] = −f0(6.14)
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7. The Enveloping Algebra of a Lie Algebra

The enveloping algebra Ug is defined to be the the unique solution to the fol-
lowing universal problem:

Ug is an associative unitial algebra with a linear map ρ : g → Ug such that
ρ(x)ρ(y)−ρ(y)ρ(x) = ρ([x, y]) and if U is another such algebra there exists a unique
unitial algebra map π : U (g)→ U such that

Ug

g
ρ′
>

ρ
>

U

p

∨

.........

7.1. Proposition: Ug exists and is unique up to isomorphism.
Proof: Uniqueness is clear from the universal property. Define Tg :=

⊕
k g⊗k

to be the tensor algebra. Now, let ρ̃ : g ↪→ Tg as an element of degree 1 and let
Ug := Tg/x ⊗ y − y ⊗ x − [x, y] be the result of modding out Tg by the algebra
generated by the Lie bracket. Then ρ : g → Ug is simply ρ̃ factoring through the
quotient. Clearly, this satisfies the requirement that

ρ(x)ρ(y)− ρ(y)ρ(x) = x⊗ y − y ⊗ x = [x, y] = ρ([x, y])

For any other associative unital algebra U such that ρ′ : g→ U we can define a map
p : Ug→ U in the logical way by p : x1 ⊗ . . . ,⊗xk 7→ p(x1) . . . p(xk). Therefore Ug
is a universal enveloping algebra and so by uniqueness is the universal enveloping
algebra.

2

7.2. Properties of Ug. Any representation of g extends to a representation
of Ug. Indeed, if V is a g module with representation π we have by the universal
property the following diagram:

g
π
> End

Ug

∃ π̃
∧

ρ >

So V is a Ug via p.

Similarly, any representation of Ug corresponds to a representation of g by
composition:

Ug
π̃
> End

g

∃ π̃◦ρ
∧

ρ >

Combining the two facts above we see that {Reps of g} ≡ {Reps of Ug}.
Now, Tg =

⊕
k g⊗k is N graded but the ideal I = {x⊗ y− y⊗x− [x, y]} is not

homogeneous so Ug doesn’t inherit the grading from Tg. However, Ug is filtered
since the standard filtration of Tg descends to the filtration Ug = ∪n∈NUgn where
Ugn = {ρ(x1) . . . ρ(xn)|xi ∈ g}.
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7.3. Lemma: The graded of Ug given by Gr(Ug) := ⊕nUgn/Ugn−1 is com-
mutative.

Proof: This is a simple check: ρ(x)ρ(y) = ρ(y)ρ(x) + ρ([x, y]) in Ug so in
Gr(Ug), ρ(x)ρ(y) = ρ(y)ρ(x). 2

7.4. Corollary: If Sg := ⊕n≥0S
ng is the symmetric algebra of g then Sg

σ−→
Gr(Ug) by S0 3 x 7→ ρ(x) ∈Gr(Ug) and S 3 x1 . . . xk 7→ ρ(x1) . . . ρ(xk) ∈Gr(Ug)

7.5. Theorem: (PBW). The map σ : Sg → Gr(Ug) is in fact an isomor-
phism of graded algebras for any Lie algebras g over any field. The proof can be
found elsewhere.

7.6. Corollary’s of PBW:.
(1) dim Ugn/Ugn−1 = dim Sng
(2) the defining map ρ : g → Ug is an embedding. This justifies writing x

instead of ρ(x) in Ug by abuse of notation.
(3) If {xa}a∈Λ is a basis of g then the lexicographically ordered monomials in

xa form a basis of Ug.
7.6.1. Exercise. Prove the above.

(4) Suppose that as a vector space g = g1 ⊕ g2 where gi are Lie subalgebras
of g, then by universality

Ugi ⊂
πi
> Ug

gi

ρi

∧

⊂ > g

ρ
∧

so Ug1 ⊗ Ug2 → Ug is a linear map of bimodules given by π : g1 ⊗ g1 7→
π1(g1)⊗ π2(g2). We claim that this is an isomorphism.

Proof: Choose an ordered basis {xia}a∈Λi of gi. Then {{x1
a}a∈Λ1 , {x2

b}b∈Λ2}
is an ordered basis of g (if we put Λ1 < Λ2). Then any element x1

a . . . x
1
a′⊗

x2
b . . . x

2
b′ in the basis of Ug1 ⊗Ug2 corresponding to the bases above cor-

respond to the lexicographically ordered monomial x1
a . . . x

1
a′x

2
b . . . x

2
b′ in

the basis for Ug. This correspondence is clearly a bijection. 2

7.7. Remark: Assume that the field K has characteristic 0. Then in addition
to the map Sg →Gr(Ug) there exists a map Sg → Ug given by the composition
Sg ↪→ Tg → Ug where x1 . . . xk 7→ 1

m

∑
σ∈σm xσ(1) . . . xσ(m). This map is an

isomorphism of filtered vector spaces.

8. Representations of ĥ

Recall that ĥ = Ch⊕ Cc⊕ Cd.

8.1. Definition:
(1) A representation of ĝ is diagonalizable if V = ⊗λ∈ĥ∗Vλ where Vλ = {v ∈

V |tv = λ(t)v,∀t ∈ ĥ}
(2) A diagonalizable representation is called integrable if ei and fi act nilpo-

tently, ie ∀v ∈ V , ∃n ∈ N such that eni v = fni v = 0.
For i = 0, 1, let gi :=< ei, fi, hi >∼= sl2
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8.2. Proposition: If V is integrable, then as a gi module V decomposes into
a possibly infinite direct sum of finite dimensional irreducible modules invariant
under the action of ĥ. ie, V = ⊕a∈C∗V

i
a as a gi module.

8.3. Corollary: V integrates to a representation of the group sl(i)2 with Lie
algebra gi.

Proof: Let v ∈ V [λ] and let γv = giv. Then

eif
k
i v = eifif

k−1
i v = hif

k−1
i v + fieif

k−1
i v =

∑
j=0

f ji hif
k−1−j
i v + fki eiv

=< λ− (k − 1− j)αi, hi >

since [t, fi] = −αi(t)fi. But this is

= k(< λ, hi > −k + 1)fk−1
i v + fki eiv

so if
∑
k,m≥0 f

k
i e

m
i v is invariant under gi and ĥ then we can calculate the effect of

applying hi to an element of v in the same way as we did for ei above. By local
nilpotence, γv is finite dimensional so all v ∈ V are contained in a finite dimensional
gi submoduel γv invariant under ĥ. By complete reducibility, γ is then the direct
sum of finite dimensional sl2 moduels. The proof follows. 2

Note: In general, V is not complete reducible as a ĝ module.

8.4. Category O. A representation V is in Category O if

(1) V is diagonal, ie V = ⊕λ∈h∗Vλ
(2) Vλ is finite dimensional
(3) There exist λ1, . . . , λr ∈ h∗ such that the nonzero eigen values of V de-

noted P (V ) := {λ|Vλ 6= 0} ⊆ ∪ni=1{µ ∈ h∗|µ ≤ λi} where µ ≤ λ means
λ− µ is the sum of positive roots.

8.4.1. Example: Let V be a highest weight representation of λ ∈ ĥ∗, ie there
∃v ∈ Vλ such that eiv = 0 and U ĝv = V . Then since ĝ = n̂ ⊕ ĥ ⊕ n̂+ by the
PBW Theorem, U ĝ = U n̂ ⊗U ĥ⊗U n̂+. Now, since U n̂+ consists of powers of ei’s,
U n̂+v = 0 and since v is an eigen vector of U ĥ, U ĝv = U n̂ v.

8.4.2. Exercise. Show that V is in catagory O.

9. Verma Modules

9.1. Definition: Mλ is a Verma Module of highest weight λ iff every module
of highest weight λ is a quotient of Mλ.

9.2. Proposition:

(1) For any λ ∈ ĥ∗ there exists a unique Verma module of highest weight λ.
(2) Mλ is a free U n̂ module of rank 1.
(3) Mλ contains a unique maximal proper submodule.
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Proof:

(1) Uniqueness is clear from the definition. For existence, let Iλ ⊆ U ĝ be the
left ideal generated by n̂+ and (t− λ(t).1) for t ∈ ĥ and set Mλ = U ĝ/Iλ.
The Mλ is killed by n̂+ and t ∈ ĥ acts on Mλ by t.1 = λ(t)1.

Furthermore, any mod. of highest weight representation will be given
by

(2) By PBW, U ĝ = U n̂ ⊗ U ĥ ⊗ U n̂+ so when we mod out by Iλ, we kill n̂+

and ĥ is identified with the scalars so U ĝ/Iλ ∼= U n̂ as a left U n̂ module.
(3) Let M ′ ⊆Mλ be a submodule of Mλ. We will show that M ′ is proper iff

M ′[λ] = 0. First, if M ′[λ] 6= 0 then vλ ∈M ′; but then Mλ = U ĝvλ ⊆M ′

so M ′ = Mλ. If M ′[λ] = 0 then M ′ is clearly proper as it does not contain
vλ.

Now, let M ′ =
∑
M ′′(Mλ

M ′′ be the sum of all proper submodules,
then M ′[λ] =

∑
M ′′(Mλ

M ′′[λ] = 0 so M ′ ( Mλ is the unique proper
submodule of Mλ. 2

9.3. Corollary: There exists a unique, irreducible highest weight modules of
weight λ denoted L(λ).

Proof: Let L(λ) = Mλ/M
′
λ. Then L(λ) is clearly irreducible. It is unique

since if πi : Mλ → Li(λ) then kerπi is a maximal proper submodule of Mλ. Then
by part 3 of the the proposition kerπ1 = kerπ2 so L1(λ) = Mλ/ kerπ1 = L2(λ). 2

10. Integrable Modules

Recall that a ĝ module is integrable iff hi acts diagonally and fi, ei act nilpo-
tently.

10.1. Proposition: Lλ is integrable iff λ(hi) ∈ Z+, i = 0, 1.

Proof: ⇒) hivλ = λ(hi)vλ and vλ lies in a finite dimensional sl
(i)
2 module

so λ(hi) ∈ Z by the representation theory of sl2. Since eivλ = 0, λ(hi) ∈ Z≥0.
***********************

⇐) We showed above that eifki v = k(λ(hi) − k − 1)fk−1
i v so, in particular,

eif
λ(hi)+1
i vλ = 0. Moreover, for j 6= i, ejf

λ(hi)+1
i = 0 since ei and fj commute.

This then implies that the submodule generated by f
λ(hi)+1
i is proper. Now, for

U ĝ = U n̂ ⊗ U ĥ ⊗ U n̂+, U n̂ decreases the weight of a vector, U ĥ scales a vector
and U n̂+ increases the weight so it is impossible to ”capture” anything ”above”
f
λ(hi)+1
i vλ. But L(λ) has no proper submodules so fλ(hi)+1

i vλ = 0. It follows that
the fi’s are locally nilpotent since they are locally nilpotent on Vλ and are locally
nilpotent on ĝ:

For m >> 0 and xi ∈ n , fmi x1 . . . xkvλ =ad(f)m1(xi) · fm2vλ. By picking m
large enough we force m1 or m2 to be large so, since fm2vλ = 0 for some m2 and
ad(fi)1−aij (fj) = 0 by the serre relations fi acts nilpotently. 2
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10.2. Integrable Highest Weight Modules for ŝl2. Finally, we will look
at highest weight representations for ĝ. The eigenvalues of ĥ are of the form λ̂ =
hω = λ + kΛ0 + nδ, where λ ∈ h∗, Λ0(c) = 1, Λ0(h /∈ Cc) = 0, and δ(d) = 1,
δ(h /∈ Cd) = 0.

Now, cVλ = k(c)Vλ so c|V = kid since c is central. Then cλvλ = λcvλ = kλvλ.
If V is integrable, then λ̂(h1) ∈ Z+ by the work done previously so λ̂(h1) = λ(h)
and Z+ 3 λ̂(h0) = λ̂(−h + c) = −λ(h) + k. Now, L(λ̂) is integrable iff λ(h) ∈ Z+

and λ(h) ≤ k.
Fix k in N. Then, the irreducible representations of sl2 and ŝl2 are given by

s s s s s s
0 1 2 . . . λ(h)

sl2 : s s s s s s
0 1 2 . . . k

ŝl2 :

So there are a finite number of irreducible representations for any fixed k.
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11. Solutions to Exercises

(Exercise 2.2.1) For a general Lie algebra g, show that g̃ is a Lie algebra.

Proof: Clearly Lg is a Lie Algebra since all the properties of the bracket on Lg

follow directly from the linearity of the bracket on g and the definition [f, g](z) =
[f(z), g(z)]. Now, Let f, g ∈ Lg and let c1, c2 ∈ C. Then

[f + c1d, g + c2d] = [f, g] + [f, c2d] + [c1d, g] + [c1d, c2d] = [f, g]− c2d(f) + c1d(g)

First, this is bilinear since [·, ·] is and d is linear. It’s alternating since

[g+c2d, f+c1d] = [g, f ]−c1d(g)+c2d(f) = −([f, g]+−c2d(f)+c1d(g)) = −[f+c1d, g+c2d]

Finally,

[d, [f, g]] + [f, [g, d]] + [g, [d, f ] = [d(f), g]) + [f, d(g)] + [f,−d(g)] + [g, d(f)] = 0

and

[d, [d, f ]] + [d, [f, d]] + [f, [d, d]] = [d, d(f)] + [d,−d(f)] + [f, 0] = 0

and by definition

[f, [g, h]] + [g, [h, f ]] + [h, [f, g]] = 0 = [d, [d, d]]

So since the bracket is bilinear,

[f + c1d, [g+ c2d, h+ c3d]] + [g+ c2d, [h+ c3d, f + c1d] + [h+ c3d, [f + c1d, g+ c2d]]

Can be rewritten as the sum of factors of one of the above four forms and so is 0
as required for the Jacobi Identity. �

(Exercise 2.2.2) The representation V of Lg given by Definition 1.1 does not
extend to a representation of g̃.

Proof: If V ∼= C2 is the representation given in Definition 1.1 then V is a
Lg module by ρa : Lg →End(V ) st g 7→ g(a) for some a ∈ C. Assume that this
representation could be extended to one of g̃. Then we would must have a matrix
ρa(d) = D such that if x 7→ X, [D,X(n)] = nx(n). But

[D,X(n)] = DX(n)−X(n)D = DXan−XanD = an(DX−XD) = an[D,X] 6= nXan

since [D,X] cannot equal nX for all n. Therefore V does not extend to a represen-
tation of g̃.



20 1. THE ENVELOPING, AFFINE AND LOOP ALGEBRAS OF SL(2)

(Exercise 3.1.2) Show that a 2-cocylce defines a Lie algebra structure on the
central extension of L by a.

Proof: First,

[a1 + x1, a2 + x2]ˆ = [a1, a2]ˆ + [a1, x2]ˆ + [x1, a2]ˆ + [x1, x2]ˆ

so, since all these terms are 0 except the last, it suffices to check that [x1, x2]ˆ =
[x1, x2] + B(x1, x2) satisfies the properties of the bracket. The bilinearity and
alternating properties follow from the definition of the wedge product. The Jacobi
identity holds by the definition of a 2-cocylce since

[x, [y, z]ˆ]ˆ = [x.[y, z] +B(y, z)]ˆ = [x, [y, z]]ˆ + [x,B(y, z)]ˆ =

[x, [y, z]] +B(x, [y, z])
since [x,B(y, z)] = 0. So

[x, [y, z]ˆ]ˆ + [y, [z, x]ˆ]ˆ + [z, [x, y]ˆ]ˆ =

[x, [y, z]] +B(x, [y, z]) + [y, [z, x]] +B(y, [z, x]) + [z, [x, y]] +B(z, [x, y]) = 0
and B defines a Lie Algebra structure on L ⊕ a. Furthermore, the short exact
sequence of vector spaces

1→ a→ L⊕ a→ L→ 1

is an ses of Lie algebras since both of the maps are Lie algebra morphisms: [a, a] =
0 7→ 0 = [a, a]ˆ and [x, y]ˆ = [x, y] +B(x, y) 7→ [x, y] since B(x, y) ∈ a.

(Exercise 3.1.3) Show that B′(x, y) = B(x, y) +A([x, y]) is a 2-cocycle.

Proof: First, B′ : L ∧ L → a since B does and A is linear and [x, y] is skew
symmetric. Then fact that B′ is a 2-cocycle is a simple computation:

B′([x, y], z) +B′([y, z], x) +B′([z, x], y)

= B([x, y], z) +A([[x, y], z]) +B([y, z], x) +A([[y, z], x]) +B([z, x], y) +A([[z, x], y])
= B([x, y], z)+B([y, z], x)+B([z, x], y)+A([[x, y], z]+[[y, z], x]+[[z, x], y]) = 0+A(0) = 0

(Exercise 3.1.4) Show that a 2-coboundary is always a 2-cocycle.

Proof: First, A([x, y]) = A(−[y, x]) = −A([y, x]) so A : L ∧ L → a. Now, by
linearity,

A([[x, y], z])+A([[y, z], x])+A([[z, x], y]) = A([[x, y], z]+[[y, z], x]+[[z, x], y]) = A(0) = 0
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so A([x, y]) is a 2-cocycle.

(Exercise 3.1.7) Show the map taking an isomorphism class of central extension
of L by a to its corresponding element in the homology H2(L, a) defined above is
an isomorphism.

Proof: Since central extension is defined by a 2-cocycle this map is clearly
onto; since every map B : L ∧ L → a defines a Lie algebra structure on L ⊕ a we
simple need to check that two central extension are isomorphic iff they differ by a
coboundary. One way is obvious, assume that B′(x, y) = B(x, y) +A([x, y]). Then
φ : L⊕ a→ L⊕ a by φ : x⊕ a 7→ x⊕ (a+A(x)).

Indeed this is a vector space isomorphism:
Injective: x⊕ (a+A(x)) = y⊕ (b+A(y)) implies that x = y and so a+A(x) =

b+A(x) which implies that a = b.
Surjective: x⊕−A(x) 7→ x and 0⊕a 7→ a so it is surjective on a basis of L⊕ a.

It is a Lie algebra isomorphism since

φ([x, y]B) = φ([x, y]⊕B(x, y)) = [x, y]⊕B(x, y) +A([x, y]) = [x, y]B′

It is clear that this map respects the commutative diagram below:

0 → a → L̂ → L → 0
‖ ↓ φ ‖

0 → a → L̂ → L → 0
Therefore if two maps differ by a 2-coboundary they yield isomorphic central

extensions and so the map from H1(L, a) →isomorphism classes of central exten-
sions of L by a is well defined and surjective. We will now see that it has an inverse.

Now, assume that two maps B,B′ : L ∧ L → a are isomorphic via a map
φ : L ⊕ a → L ⊕ a such that the above commutes. Then by the commutativity of
the diagram φ(0 ⊕ a) = 0 ⊕ a for a ∈ a and φ(x ⊕ 0) = x ⊕ ˆφ(x) for all x ∈ L,
φ : L→ a. In general then

φ(x⊕ a) = φ(x⊕ 0) + (0⊕ a) = x⊕ φ̂(x) + 0⊕ a = x⊕ (φ̂(x) + a)

Now, since φ is a Lie algebra homomorphism, by letting x := x⊕ 0 and a := 0⊕ a
by abuse of notation we get

φ([x, y]B) = φ([x, y]+B(x, y)) = [x, y]+φ̂([x, y]⊕B(x, y)) = [x, y]+φ̂([x, y])+B(x, y)

and

[φ(x), φ(y)]B′ = [x+ φ̂(x), y + φ̂(y)]B′ = [x, y]B′ = [x, y] +B′(x, y)

where the second equality on the last row comes from the fact that φ̂(x) is central.
But since φ is a Lie algebra homomorphism these must be equal so

[x, y] + φ̂([x, y]) +B(x, y) = [x, y] +B′(x, y)
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and B′(x, y) = φ̂([x, y]) + B(x, y) where φ̂ : L → a. Therefore B and B′ differ
by a 2-coboundary and so there is a map sending isomorphism classes of central
extensions of L by a to H2(L, a). It is clear that this map is the inverse of the one
constructed above.

Therefore the central extensions L ⊕ a are in one to one correspondence with
elements of H2(L, a).

(Exercise 4.0.1) Let (p, q) :=Res< p, q > /z. Prove the following:
(1) (x(m), y(n)) = δm+n,0(x, y)
(2) On Lg, (·, ·) is a nondegenerate bilinear form.
(3) (·, ·) is invariant under the bracket

Proof:
(1)

(x(n), y(m)) = Res
< x(n), y(m) >

z
= Res(x, y)zn+m−1 = (x, y)δm+n,0

since Reszn+m−1 6= 0 iff n+m− 1 = −1 by definition.
(2) If p, q, r ∈ Lg are of the form p = . . .+ p−1z

−1 + p0 + p1z + . . .

(c1p+ c2r, q) = Res
< c1p+ c2r, q >

z
= Res

<
∑
i c1piz

i + c1riz
i,
∑
i qiz

i >

z
=

Res

(∑
i

∑
j < c1piz

i + c1riz
i, qjz

j >

z

)
= Res

(∑
i

∑
j(c1pi + c1ri, qj)zi+j

z

)

= Res

∑
i

∑
j

δi+j,0(c1pi + c2ri, qj)

 =

(∑
i

(c1pi + c2ri, q−i)

)
= c1

∑
i

(pi, q−i)+c2
∑
i

(ri, q−i)

= c1(p, q) + c2(p, q)
where the last equality can be gotten by reversing the beginning of the
argument. Linearity in the second term is the same computation. To see
that Lg is nondegenerate simply notice that for any p ∈ Lg, if pk 6= 0 for
some k then there exists a y such that (pk, y) 6= 0 by the nondegeneracy
of the inner product on g and

(p, y(−k)) =
∑
i

δi−k,0(pi, y) = (pk, y) 6= 0

(3) Let’s check that (·, ·) is invariant under the bracket:

([x(n), y(m)], w(k)) = ([x, y](n+m), w(k)) = δn+m+k,0([x, y], w) =

−δn+m+k,0(y, [x, z]) = −(y(m), [x(n), z(k)])
Therefore (·, ·) is indeed an inner product on Lg.
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(Exercise 4.0.2) Show that (p, q) :=Resz=0
<p,q>
z is a non degenerate, invariant

bilinear form on ĝ.

Proof
First, (·, ·) is bilinear since for a, b, e, f ∈ ĝ where a = pa + ca + da for pa ∈ Lg,

ca ∈ Cc and da ∈ Cd,

(a+ b, e) = (pa + pb + ca + cb + da + db, e) =

(pa + pb, e) + (ca + cb, e) + (da + db, e) = (pa + pb, pe) + (ca + cb, ed) + (da + db, ec)
= (pa + pb, pe) + (ca + cb)ed + (da + db)ec =

(pa, pe) + (ca, ed) + (da, ec) + (pb, pe) + (cb, ed) + (db, ec) =
(a, e) + (b, e)

A similarly argument shows linearity in the second term. We now show that tt is
invariant with respect to brackets

Since c is central and so commutes with everything and d is only nontrivial on
Lg, we have, for e = w(k) + c+ d,

([x(n) + c+ d, y(m) + c+ d], e) = ([x(n), y(m)] + [x(n), d] + [d, y(m)], e)

= ([x(n), y(m)] + n(x, y)δn+mc− nx(n) +my(m), w(k) + c+ d)
= ([x(n), y(m)], w(k)) + n(x, y)δn+m + (−nx(n) +my(m), w(k))

= ([x(n), y(m)], w(k)) + n(x, y)δn+m − n(x,w)δn+k +m(y, w)δk+m

Now, by a similar computation we see that

(y(m) + c+ d, [x(n) + c+ d, e])

= (y(m), [x(m), w(k)]) + n(x,w)δn+k + (y(m),−nx(n) + kw(k))
= (y(m), [x(m), w(k)]) + n(x,w)δn+k + k(y, w)δm+k − n(y, x)δm+n

Since (·, ·) is invariant on x(n), y(m), w(k) we only need to check that

n(x, y)δn+m−n(x,w)δn+k+m(y, w)δk+m = −(n(x,w)δn+k+k(y, w)δm+k−n(y, x)δm+n)

But this is quiet simple since the only term for which this is no obvious ism(y, w)δk+m =
−k(y, w)δm+k; but both sides are 0 unless m = −k so the equality holds. Therefore
the killing form extends to a invariant bilinear form on ĝ.

(Exercise 6.2.1) Check that in ĝ, e0, f0, h0 form an sl2 triple.

Proof: Let e0 = f(1), f0 = e(−1) and h0 = −h+ c. Then

[e0, f0] = [f(1), e(−1)] = [f, e] + (f, e)c = −h+ c = h

since [e, f ] = h and (f, e) = 1 by the relations in 1.1 and 1.2. Similarly

[h0, f0] = [−h+ c, e(−1)] = −[h, e(−1)] = −[h, e](0− 1) = −2e(−1) = −2f0

and

[h0, e0] = [−h+ c, f(1)] = −[h, f(1)] = −[h, f ](0 + 1) = 2f(1) = 2e0
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Therefore e0, f0, h0 form an sl2 triple.

(Exercise 7.6.1) Show that if {xa}a∈Λ is a basis of g then the lexicographically
ordered monomials in xa form a basis of Ug.

Proof: The lexicographically ordered monomials form a basis of the symmetric
algebra Sg by its definition and so form a basis of Gr(Ug) by PBW. First, it’s clear
that the LOM’s of degree 1 form a basis of Ug1 since Tg1 =GrUg1 = Sg1 = g and
GrUg1 ⊆ Ug1 ⊆ Tg1.

Now,by induction the LOM’s of degree n − 1 form a basis of Ugn−1. But the
LOM’s of degree n form a basis of Gr(Ug)n = Ugn/Ugn−1. But every element of
Ugn can be written as an element of Ugn/Ugn−1 plus an element of Ugn−1 so if
the LOM’s of degree n form a basis of Ugn/Ugn−1 and the LOM’s of degree n− 1
form a basis of Ugn−1 then the union of these two bases is a basis for Ugn. But
the union is simply the LOM’s of degree n. Since Ug = ∪n∈NUgn, the union of all
such bases forms a basis of Ug, but this is simple the set of all LOM’s.

(Exercise 8.4.2) Show that a highest weight representation V is in category O

Proof: First, V = U n̂−v is diagonal since for any basis element (ie lexicograph-
ically ordered monomial so element of the form fm0 f

n
1 ), fm0 f

n
1 · v we have

h0(fm0 f
n
1 · v) = [h0, f0]fm−1

0 fn1 · v + f0h0f
m−1
0 fn1 · v

= −2fm0 f
n
1 · v + f0h0f

m−1
0 fn1 · v = . . . = −2mfm0 f

n
1 · v + fm0 h0f

n
1 · v

= −2mfm0 f
n
1 · v − 2nfm0 f

n
1 · v + fm0 f

n
1 h0 · v

= (−2m+ 2n+ λ(h0))fm0 f
n
1 · v = (λ(h0)−mα0(h0)− nα1(h0))fm0 f

n
1 · v

where α0 = (−α, 1) and α1 = (α, 0) as before. By practicality the same computa-
tion,

h1(fm0 f
n
1 · v) = (2m− 2n+ λ(h1))fm0 f

n
1 · v = (λ(h1)−mα0(h1)−nα1(h1))fm0 f

n
1 · v

Finally,
d(fm0 f

n
1 · v) = [d, f0]fm−1

0 fn1 · v + f0df
m−1
0 fn1 · v =

= −fm0 fn1 · v + f0df
m−1
0 fn1 · v = . . . = −mfm0 fn1 · v + fm0 df

n
1 · v

(λ(d)−m)fm0 f
n
1 · v = (λ(d)−mα0(d)− nα1(d))fm0 f

n
1 · v

So since fm0 f
n
1 · v is a basis of V of eigenvectors of ĝ, ĝ acts diagonally. Therefore

V satisfies the first condition of category O.
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Now, the above computations show that the weight spaces are all of the form
µ = λ−mα0 − nα1 and so λ− µ = mα0 + nα1 is a positive root and µ < λ for all
weights µ of V . Therefore V satisfies the third condition of category O.

Finally, V satisfies the second condition of category O since each weight space
µ = λ−mα0 − nα1 is one dimensional, corresponding to fm0 f

n
1 · v. Therefore V is

in category O.





CHAPTER 2

Quantum group Uqsl2

1. Gaussian integers

1.1. Let v be an indeterminate. Define for each n ∈ Z:

[n]v :=
vn − v−n

v − v−1

The following properties are easily verified:
(1) For n ≥ 1 we have:

[n]v = vn−1 + vn−3 + · · ·+ v−n+3 + v−n+1

and [−n]v = −[n]v. Therefore, we have

[n]v ∈ Z[v, v−1]

(2)
[n]v|v=1 = n

(3) [0]v = 0, [1]v = 1 and

[2]v = v + v−1

(4) For m,n ∈ Z, [m]v + [n]v 6= [n+m]v. However

v−m[n]v + vn[m]v = [n+m]v
Proof. Using the definition of the Gaussian integers we have:

v−m[n]v + vn[m]v =
v−m(vn − v−n)

v − v−1
+
vm(vn − v−n)

v − v−1

=
vm−n − v−m−n + vn+m − vm−n

v − v−1

= [n+m]v
�

1.2.

[n]v! := [n]v[n− 1]v · · · [1]v[
a
n

]
v

:=
[a]v!

[a− n]v![n]v!

Lemma. For every a, n ∈ N, a ≥ n we have:[
a+ 1
n

]
v

= v−n
[
a
n

]
v

+ va−n+1

[
a

n− 1

]
v

and hence
[
a
n

]
v

∈ Z[v, v−1].

27
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Proof. We begin by computing the right–hand side :

R.H.S. = v−n
[
a
n

]
v

+ va−n+1

[
a

n− 1

]
v

= v−n
[a]v!

[a− n]v![n]v!
+ va−n+1 [a]v!

[n− 1]v![a− n+ 1]v!

=
[a]v!

[n]v![a− n+ 1]v!
(
v−n[a− n+ 1]v + va−n+1[n]v

)
=

[a]v!
[n]v![a− n+ 1]v!

[a+ 1]v

=
[
a+ 1
n

]
v

�

2. Definition of Uqsl2

Let k be a field and q ∈ k be a non–zero element such that q2 6= 1. Mainly we
will have the following examples in mind:

(1) k = C and q ∈ C \ {0, 1,−1}.
(2) k = C(v) and q = v.

2.1. Definition. Uqsl2 is a unital associative algebra over k generated by
{K±1, E, F} subject to the following relations:

(QG1)
KK−1 = K−1K = 1

(QG2)

KEK−1 = q2E KFK−1 = q−2F

(QG3)

[E,F ] =
K −K−1

q − q−1

It will be convenient in computations to have the following notation:

[K; a] :=
qaK − q−aK−1

q − q−1

Note that we have the following reformulation of the relations of Uqsl2:
(1) (QG3) is equivalent to EF − FE = [K; 0].
(2) (QG2) is equivalent to :

[K; a]F = F [K; a− 2]

[K; a]E = E[K; a+ 2]

Lemma. The following relations hold in Uqsl2, for every r, s ≥ 1:

EF s = F sE + [s]qF s−1[K; 1− s]
FEr = ErF − [r]qEr−1[K; r − 1]
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Proof. We only prove the first of the two identities. The proof of the second
one is exactly similar. The proof is based on induction on s. For s = 1 the relation
EF = FE + [K; 0] is precisely the relation (QG3). We proceed with the induction
step:

EF s+1 = (EF )F s

= (FE + [K; 0])F s

= FEF s + [K; 0]F s

= F (F sE + [s]qF s−1[K; 1− s]) + F s[K;−2s]

= F s+1E + F s ([s]q[K; 1− s] + [K;−2s])

= F s+1E + F s
(
q−s([s]qq + q−s)K + qs([s]qq−1 + qs)K−1

q − q−1

)
= F s+1E + [s+ 1]q[K;−s]

where we have used the following two special cases of v−n[m]v +vm[n]v = [n+m]v:

v−1[m]v + vm = [m+ 1]v
v−n + v[n]v = [n+ 1]v

�

3. PBW theorem

Proposition. The set of monomials S = {F sKnEr : r, s ∈ N, n ∈ Z} spans Uqsl2.

Proof. It suffices to prove that the set S is stable under left multiplication by
{K±, E, F}. We check this using the Lemma 2.1:

(1)
F.F sKnEr = F s+1KnEr

(2)
K±1.F sKnEr = q∓2sF sKn±1Es

(3)

E.F sKnEr = q−2nF sKnEr+1 + [s]qF s−1[K; 1− s]KnEr

�

Theorem. The set of monomials S = {F sKnEr : r, s ∈ N, n ∈ Z} is linearly
independent in Uqsl2.

Proof. Let V = k[X,Y, Z±1] and define operators ρ(E), ρ(F ), ρ(K±1) on V
by:

ρ(F ).Y sZnXr = Y s+1ZnXr

ρ(K±1)Y sZnXr = q∓2sY sZn±1Xr

ρ(E)Y sZnXr = q−2nY sZnXr+1 + [s]qY s−1[Z; 1− s]ZnXr

where [Z; a] :=
Zqa − Z−1q−a

q − q−1
.
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Claim: The operators {ρ(E), ρ(F ), ρ(K±1)} satisfy the relations (QG1), (QG2)
and (QG3).

Assuming the claim, ρ extends to a representation of Uqsl2 on V . Moreover we
have:

ρ(F sKnEr).1 = Y sZnXr

Therefore {F sKnEr.1 : r, s ∈ N, n ∈ Z} ⊂ V is a linearly independent set.
This proves that the set S is linearly independent and we are done.

Proof of the claim: We verify the relations directly:

(QG1) ρ(K)ρ(K−1) = ρ(K−1)ρ(K) = 1 is clear.
(QG2) We prove the relation KEK−1 = q2E. The proof for the case of F is

absolutely similar.

ρ(K)(ρ(E)(ρ(K−1)(Y sZnXr))) = q2sρ(K)ρ(E)(Y sZn−1Xr)

= q2sρ(K)
(
q−2(n−1)Y sZn−1Xr+1 + [s]qY s−1[Z; 1− s]Zn−1Xr

)
= q−2(n−1)Y sZnXr+1 + q2[s]qY s−1[Z; 1− s]ZnXr

= q2ρ(E)(Y sZnXr)

(QG3)

[ρ(E), ρ(F )]Y sZnXr = ρ(E)(ρ(F )(Y sZnXr))− ρ(F )(ρ(E)(Y sZnXr))

= ρ(E)(Y s+1ZnXr)− ρ(F )
(
q−2nY sZnXr+1 + [s]qY s−1[Z; 1− s]ZnXr

)
= q−2nY s+1ZnXr+1 + [s+ 1]qY s[Z;−s]ZnXr

− q−2nY s+1ZnXr+1 − [s]qY s[Z; 1− s]ZnXr

= Y s ([s+ 1]q[Z;−s]− [s]q[Z; 1− s])ZnXr

= Y s
(
q−2sZ − q2sZ−1

q − q−1

)
ZnXr

=
(
K −K−1

q − q−1

)
Y sZnXr

�

4. Representation theory of Uqsl2

For notational convenience we set U = Uqsl2 in this section. We further assume
that q is not a root of unity.

4.1.

Proposition. If V is a finite–dimensional representation of U then there exist
r, s ≥ 0 such that Er = F s = 0 on V .
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Proof. We begin by writing the Jordan decomposition of K:

V =
⊕
p(x)

V(p)

where

• p(x) ranges over irreducible polynomials in k[x].
• V(p) := {v ∈ V : p(K)nv = 0}. Since K is invertible this in particular

yields: V(p) 6= 0⇒ p(0) 6= 0.
• V(p) = V(p′) if, and only if p and p′ are proportional.

Using KF = q−2FK and hence p(K)F = Fp(q−2K), we get:

F : V(p(x)) → V(p(q2x))

Moreover, we have V(p(qrx)) = V(p(qsx)) if, and only if p(qrx) = p(qsx) (since p
has non-zero constant term) which implies qrn = qsn (n = degree of p). This implies
r = s since q is not a root of unity. Since V is a finite–dimensional representation
we get that F acts nilpotently. The proof for E is absolutely similar. �

4.2.

Proposition. Assume that char(k) 6= 2. If V is a finite–dimensional representa-
tion of U then K acts semisimply on V with eigenvalues ±qa (a ∈ Z).

Proof. From previous proposition, we know that F s = 0 on V , for some s ≥ 0.

Claim 1:
s−1∏
j=1−s

(K − qj)(K + qj) = 0

Claim 2: Define

hr :=
r−1∏
j=1−r

[K; r − s+ j]

Then we have F s−rhr = 0 for every 0 ≤ r ≤ s.

Note that the second claim for r = s yields the first claim, which directly
implies the assertion of the proposition. Thus we are reduced to proving the second
claim, for which we shall need the following

Lemma.

ErF s =
min(r,s)∑
i=0

[
r
i

]
q

[
s
i

]
q

[i]q!F s−ih̃iEr−i

where we define:

h̃i :=
i∏

j=1

[K; i− (r + s) + j]
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Set ai =
[
r
i

]
q

[
s
i

]
q

[i]q!. Assuming the statement of this lemma, we have

(for r ≤ s):

0 = ErF s
r−1∏
j=1

[K; r − s+ j]

=
r∑
i=0

aiF
s−ih̃iE

r−i
r−1∏
j=1

[K; r − s+ j]

= arF
rh̃r

r−1∏
j=i

[K; r − s+ j] +
r−1∑
i=0

aiF
s−ih̃iE

r−i
r−1∏
j=1

[K; r − s+ j]

= arF
rhr +

r−1∑
i=0

F s−ihi

r−i∏
j=1

[K; i+ j − r − s]Er−i

Now the proof of the second claim follows by induction on r.
Proof of the lemma: Let us begin by writing the straightening relation for unknown
elements hi(r, s) ∈ U0:

(4.1) ErF s =
min(r,s)∑
i=0

F s−ihi(r, s)Er−i

Here U0 is the subalgebra generated by K±1. Let σ be the automorphism of U0

sending K to q−2K. Then we have:
• h0(0, r) = h0(r, 0) = 1
• hi(r, s) = hi(s, r). To prove this apply the anti–automorphism ω, defined

by ω(F ) = E, ω(E) = F and ω(K) = K to equation (4.1).
Using Lemma 2.1 one can write down the following recursive system, which

together with the observations above, determines the elements hi(r, s):
• For every 0 ≤ i ≤ r, r ≤ s we have:

(4.2) hi(r, s+ 1) = σhi(r, s) + [r − i+ 1]qhi−1(r, s)[K; i− r]
• For every r < s and 0 ≤ i ≤ r + 1 we have:

(4.3) hi(r + 1, s) = σhi(r, s) + [s− i+ 1]qhi−1(r, s)[K; i− s]
with the convention that h−j(r, s) = hj+min r,s(r, s) = 0 for every j ≥ 1.

Thus it remains to check that hi(r, s) given by

hi(r, s) =
[
r
i

]
q

[
s
i

]
q

[i]q!
i∏

j=1

[K; i+ j − (r + s)]

satisfies this system. The base case h0(0, r) = 1 and symmetry in r, s is clear. We
prove (4.2).

σhi(r, s) + [r − i+ 1]q[K; i− r]hi−1(r, s) =
[r]q![s]q!

[r − i]q![s− i+ 1]q![i]q![s− i+ 1]q
i∏

j=1

[K; i+ j − r − s− 2] + [i]q[K; i− r]
i−1∏
j=1

[K; i+ j − r − s− 1]





4. REPRESENTATION THEORY OF Uqsl2 33

=
[r]q![s]q!

[r − i]q![s− i+ 1]q![i]q!

i−1∏
j=1

[K; i+j−r−s−1] ([s− i+ 1]q[K; i− r − s− 1] + [i]q[K; i− r])

One can directly verify that

[s− i+ 1]K [i− r − s− 1] + [i]q[K; i− r] = [s+ 1]q[K; 2i− r − s− 1]

which implies:

σhi(r, s) + [r − i+ 1]q[K; i− r]hi−1(r, s) =
[r]q![s]q!

[r − i]q![s− i+ 1]q![i]q!
[s+ 1]q

i∏
j=1

[K; i+ j − r − s− 1]

=
[
r
i

]
q

[
s+ 1
i

]
q

[i]q!
i∏

j=1

[K; i+ j − r − (s+ 1)]

= hi(r, s+ 1)

The proof of (4.3) is similar and hence omitted. �

4.3. From now onwards, we assume that q is not a root of unity and char(k) 6=
2.

Using Proposition 4.2 we have that every finite–dimensional U–module M de-
composes as:

M =
⊕
λ∈k×

Mλ

where Mλ = {m ∈ M : Km = λm}. Using finite dimensionality of M , we know
that there exists λ ∈ k× such that Mλ 6= 0 and Mq2λ = 0. If v ∈ Mλ is any
non–zero vector, then Ev ∈ Mq2λ = 0. Hence v is a highest–weight vector. Thus
the submodule M ′ of M generated by v is a highest–weight module.

Corollary. Every irreducible finite–dimensional U–module is a highest–weight mod-
ule for a unique highest–weight λ.

The uniqueness follows from the fact that q is not a root of unity.

4.4. Highest weight modules. For λ ∈ k× there exists a unique Verma
module M(λ) defined by:

M(λ) := U/UE + U(K − λ)

Let us denote by m0 ∈ M(λ) the coset of 1 ∈ U . Then a basis of M(λ) can be
obtained as:

{mi := F im0 : i ≥ 0}
Moreover the action of U on M(λ) can be written explicitly as:

Kmi = λq−2imi

Fmi = mi+1

Emi = [i]q
q1−iλ− qi−1λ−1

q − q−1
mi−1

Proposition. (1) M(λ) has a unique maximal proper submodule M(λ)′.
(2) If λ 6= ±qn for any n ∈ N, then M(λ) is irreducible.
(3) If λ = ±qn for some n ∈ N, then M(λ)′ = Span{mi : i ≥ n+ 1}.
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Proof. (1) is clear. For (2) assume that M(λ) is not irreducible, and take
M ′ to be a proper submodule. Then there exists i > 0 such that mi ∈ M ′ but
mi−1 6∈M ′. Hence Emi = 0, which implies:

Emi = [i]q
q1−iλ− qi−1λ−1

q − q−1
mi−1 = 0

Therefore, λ2 = q2(i−1) which implies (2). (3) follows from a similar computation.
�

Corollary. (1) For every λ ∈ k× there exists a unique irreducible highest–
weight module L(λ) := M(λ)/M(λ)′ of highest–weight λ.

(2) L(λ) is finite–dimensional if, and only if λ ∈ {±qn : n ∈ N}.
(3) L(λ) ∼= L(µ) if, and only if λ = µ.

4.5. Casimir operator. Define:

(4.4) C := FE +
qK + q−1K−1

(q − q−1)2

Using FE = EF − [K; 0] we can rewrite this definition as:

(4.5) C = EF +
q−1K + qK−1

(q − q−1)2

Proposition. (1) C is a central element of U .
(2) If V is a highest–weight module of highest–weight λ then C acts by a scalar

on V , given by:

C|V =
qλ+ q−1λ−1

(q − q−1)2
IdV

(3) C|M(λ) = C|M(µ) if, and only if λ = µ or λ = µ−1q−2.

Proof. (1) It is clear that C commutes with K. We check the relation CE =
EC:

EC = EFE + E
qK + q−1K−1

(q − q−1)2

= EFE +
q−1K + qK−1

(q − q−1)2
E

= CE

The proof of FC = CF is same.

(2): Let vλ ∈ V be a highest–weight vector of highest–weight λ. Then

Cvλ =
(
FE +

qK + q−1K−1

(q − q−1)2

)
vλ

=
qλ+ q−1λ−1

(q − q−1)2
vλ

Using the fact that C is central and V is generated by vλ we obtain the assertion
of (2). (3) is clear from (2). �
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4.6.

Theorem. Let M be a finite–dimensional U–module. Then M is completely re-
ducible.

Proof. We begin by writing the Jordan decomposition of C|M :

M =
⊕
f

M(f)

where

• f is an irreducible polynomial in k[x].
• M(f) := {m ∈M : f(C)nm = 0 for n >> 0}

Since C is central, we get that each M(f) is a submodule of M . Thus we may
assume that M = M(f) for some f ∈ k[x] irreducible polynomial.

Now let us consider a composition series of M :

0 = M0 ⊂M1 ⊂ · · · ⊂Mr = M

where each Mi/Mi−1
∼= L(λi) is a simple U–module. Hence C acts on the quotient

Mi/Mi−1 by the scalar:

C|Mi/Mi−1 =
qλi + q−1λ−1

i

(q − q−1)2
IdMi/Mi−1

Let ci =
qλi + q−1λ−1

i

(q − q−1)2
. Then x − ci divides f(x) for each i. Since f is irre-

ducible, we get that f(x) = x− ci and ci = cj for each i, j.

In particular this implies that λi = λj (since the other case: λi = q−2λj con-
tradicts the fact that M is finite–dimensional and hence λ ∈ ±qN).

Thus we have proved that all composition factors of M are isomorphic to L(λ)
for some λ of the form ±qn (n ∈ N).

Now let M =
⊕

µ∈k×Mµ be the weight space decomposition of M . Then we
get:

dim(M) = rdim(L(λ)) dim(Mµ) = rdim(L(λ)µ)

Choose a basis {m1, · · · ,mr} of Mλ. Let M ′ ⊂M be the submodule generated
by {mi : 1 ≤ i ≤ r}:

M ′ :=
r∑
i=1

Umi

We claim that M ′ = M and M ′ =
⊕
Umi. The first assertion follows from the

fact that (M/M ′)λ = 0 and the only composition factors of M/M ′ are isomorphic
to L(λ). The fact that the sum is direct is an easy consequence of the dimension
count. The theorem is proved. �
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5. Hopf algebra structure

5.1. Motivation. Let A be a unital associative algebra.

• (Coproduct) For V,W A–modules, we have an A–module structure on
V ⊗W if and only if there exists an algebra homomorphism:

∆ : A→ A⊗A

• (Coassociativity) The natural vector space isomorphism (U ⊗ V )⊗W ∼=
U ⊗ (V ⊗W ) is an A–module isomorphism if and only if

(∆⊗ 1) ◦∆ = (1⊗∆) ◦∆

• (Counit) The one dimensional vector space k has an A–module structure
(trivial A–module) if and only if we have an algebra homomorphism ε :
A→ k.

• The natural isomorphisms k ⊗ V ∼= V ∼= V ⊗ k are then A–module iso-
morphisms if and only if

(ε⊗ 1) ◦∆ = 1 = (1⊗ ε) ◦∆

5.2. Bialgebras. A bialgebra over k is a quintuple (A, ., 1,∆, ε) such that:

(1) (A, ., 1) is a unital associative algebra.
(2) ∆ : A→ A⊗A is an algebra homomorphism such that

(∆⊗ 1) ◦∆ = (1⊗∆) ◦∆

(3) ε : A→ k is an algebra homomorphism such that

(ε⊗ 1) ◦∆ = 1 = (1⊗ ε) ◦∆

Example. (1) A = U(g) for a Lie algebra g has the following bialgebra struc-
ture:

∆(x) = x⊗ 1 + 1⊗ x
ε(x) = 0

for every x ∈ g[z, z−1].
(2) Let Γ be a finite group and A = kΓ be the group algebra of Γ. The

bialgebra structure on A is given by:

∆(g) = g ⊗ g
ε(g) = 1

for every g ∈ Γ.
(3) Let G be an algebraic group over k and A = k[G] be its coordinate ring.

Then A has the following bialgebra structure:

∆(f)(x, y) = f(xy)

ε(f) = f(1)

for every f ∈ A, x, y ∈ G.
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5.3. Dual modules. If V is an A–module, then in order to have an A–module
structure on V ∗ we need an algebra anti–homomorphism S : A → A (i.e, S(ab) =
S(b)S(a)) called antipode. Given such S, we can define an action of A on V ∗ as
follows:

(a.φ)(v) := φ(S(a)v)

for φ ∈ V ∗, v ∈ V and a ∈ A.

Example. (1) A = U(g): the antipode is given by S(x) = −x for every
x ∈ g.

(2) A = kΓ: the antipode is given by S(g) = g−1 for every g ∈ Γ.
(3) A = k[G]: the antipode is given by S(f)(x) = f(x−1) for every f ∈ A and

x ∈ G.

5.4. Hopf algebra. A Hopf algebra over k is a hextuple (A, ., 1,∆, ε, S) where:

(1) (A, ., 1,∆, ε) is a bialgebra.
(2) S : A→ A is an algebra anti–homomorphism.
(3) The following condition holds:

m ◦ (S ⊗ 1) ◦∆ = 1ε = m ◦ (1⊗ S) ◦∆

Axiom (3) can be interpreted as follows: let V be an A–module. It is natural to
require that the following natural homomorphism of vector spaces is an A–module
homomorphism:

tr : V ∗ ⊗ V → k

which is equivalent to the assertion that for every a ∈ A, φ ∈ V ∗ and v ∈ V we
have:

tr(a.(φ⊗ v)) = ε(a)φ(v)

[Sweedler’s notation] For a ∈ A we write (suppressing the subscript and sum-
mation sign): ∆(a) = a′ ⊗ a′′.

tr(a(φ⊗ v)) = tr(a′φ⊗ a′′v)

= φ(S(a′)a′′v)

= φ ((m ◦ (S ⊗ 1) ◦∆)(a)v)

= ε(a)φ(v)

Similarly we can interpret the second part of axiom (3) as the requirement that
the following linear map is an A–module homomorphism:

k → V ⊗ V ∗ ∼= End(V )

which maps 1 ∈ k to IdV = ui ⊗ ui (here {ui} is a basis of V and {ui} is the dual
basis of V ∗).
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a.(ui ⊗ ui) = a′ui ⊗ a′′ui

= a′ui ⊗ uiS(a′′)

= a′ui ⊗ ui(S(a′′uj))uj

= a′ui(S(a′′)uj)ui ⊗ uj

= (a′S(a′′)uj)⊗ uj = ε(a)uj ⊗ uj

Remark. (1) S2 6= 1 in general. However in the examples above S2 = 1.
(2) ε ◦ S = ε.
(3) ∆ ◦ S = (S ⊗ S) ◦∆21.

5.5. U as a Hopf algebra.

Theorem. (1) The following assignment extends to a unique algebra homo-
morphism ∆ : U → U ⊗ U :

∆(K) = K ⊗K
∆(E) = E ⊗ 1 +K ⊗ E

∆(F ) = F ⊗K−1 + 1⊗ F
(2) The following assignment extends to a unique algebra homomorphism ε :
U → k

ε(K) = 1

ε(E) = ε(F ) = 0

(3) The antipode S is the unique algebra anti–homomorphism S : U → U such
that m ◦ (S ⊗ 1) ◦∆ = 1ε = m ◦ (1⊗ S) ◦∆, and is given by:

S(K) = K−1

S(E) = −K−1E S(F ) = −FK

(4) We have S2(a) = K−1aK for every a ∈ U .

Proof. (1) We check that {∆(K),∆(E),∆(F )} satisfy the defining relations
of U :

(QG1) is clear.
(QG2) is proved only for the case of E:

∆(K)∆(E)∆(K−1) = (K ⊗K)(E ⊗ 1 +K ⊗ E)(K−1 ⊗K−1)

= KEK−1 ⊗ 1 +K ⊗KEK−1

= q2∆(E)

(QG3)

[∆(E),∆(F )] = [E ⊗ 1 +K ⊗ E,F ⊗K−1 + 1⊗ F ]

= [E,F ]⊗K−1 +K ⊗ [E,F ] +KF ⊗ EK−1 − FK ⊗K−1E

=
1

q − q−1

(
K ⊗K−1 −K−1 ⊗K−1 +K ⊗K −K ⊗K−1

)
= ∆

(
K −K−1

q − q−1

)
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(2) We again have to check that the defining relations of U are satisfied by
{εK = 1, ε(E) = 0, εF = 0} in k, which is clear.

(3) We begin by proving uniqueness. Since ∆(K) = K ⊗K and ε(K) = 1 we
get:

1 = ε(K) = S(K)K ⇒ S(K) = K−1

Next we use the definition of ∆(E) and ε(E) = 0:

0 = ε(E) = S(E).1 +K−1E ⇒ S(E) = −K−1E

The computation of S(F ) is similar.

To prove that S extends to an algebra anti–homomorphism, we need to check
that {S(E), S(F ), S(K)} satisfy the relations of U in Uop:

(QG1) is again clear.
(QG2) is proved for the case of E:

S(KEK−1) = S(K−1)S(E)S(K)

= K(−K−1E)K−1

= q2S(E)

(QG3)

S([E,F ]) = [S(F ), S(E)]

= FKK−1E −K−1EFK

=
K−1 −K
q − q−1

= S

(
K −K−1

q − q−1

)
(4) Since S is algebra anti–homomorphism, S2 is an algebra homomorphism.

Thus to prove that S2 = Ad(K−1), we only need to check it on the set of generators
{K,E, F} of U , which follows directly from (3). �

6. Quasi–triangular structure

6.1. Almost cocommutative bialgebras. We say a bialgebra A is cocom-
mutative if

∆(a) = ∆21(a) for every a ∈ A
Here ∆21 = (12) ◦∆ : A⊗ A→ A⊗ A. Note that if A is cocommutative, then for
any two A–modules, V and W , the natural flip operator V ⊗W → W ⊗ V is an
A–module homomorphism.

Definition. A bialgebra A is said to be almost cocommutative, if there exists an
invertible element R ∈ A⊗2 such that

∆21(a) = R∆(a)R−1 for every a ∈ A
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Lemma. Let (A,R) be an almost cocommutative bialgebra. Then for any two A–
modules, V and W

R∨ := (12) ◦R : V ⊗W →W ⊗ V
is an A–module homomorphism

Proof. We need to prove that R∨(a.(v⊗w)) = a.(R∨(v⊗w)) for every v ∈ V ,
w ∈W and a ∈ A. This is equivalent to the following :

R∨ ◦∆(a) = ∆(a)R∨

⇐⇒ R∆(a) = (12)∆(a)(12)R

⇐⇒ R∆(a) = ∆21(a)R

Here we have used the fact that ∆21(a)(w ⊗ v) = (12) ◦∆(a) ◦ (12)(v ⊗ w). �

Note that unlike the case of cocommutative bialgebras, the square of “flip” is
not necessarily identity:

(R∨)2 = (12)R(12)R = R21R 6= 1

6.2. Braid diagrams. To better understand the motivation behind many of
the axioms that will follow, it is instructive to represent R∨ by the following braid:

(6.1)
N M

M N

?????????????????

��������
��������

As a general principle the above diagram represents the elementR∨ of HomA(M⊗
N,N ⊗M). We will follow this rule closely, whereby any braid diagram b connect-
ing (1, 2, · · · , n) to (π(1), π(2), · · ·π(n)) (for some π ∈ Sn) represents an A–module
homomorphism:

b(M1, · · · ,Mn) ∈ HomA(M1 ⊗ · · · ⊗Mn,Mπ(1) ⊗ · · · ⊗Mπ(n))

obtained by replacing each subdiagram of the form (6.1) by R∨, and a subdiagram of
the form (6.1) with under–crossing by (R∨)−1. For instance the following diagram
represents an A–module homomorphism M1 ⊗M2 ⊗M3 → M3 ⊗M1 ⊗M2 given
by: R∨M1,M3

◦R∨M2,M3
.

/////////////

/////////////

�����

����

�����

Let Bn denote the group of braids on n strands (Artin’s braid group). It is well
known that Bn is generated by T1, · · · , Tn−1 subject to the following relations:

TiTj = TjTi if |i− j| > 1
TiTi+1Ti = Ti+1TiTi+1 for 1 ≤ i ≤ n− 2
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Here Ti is the following braid:

1 · · · i− 1 i i+ 1 i+ 2 · · · n

1 · · · i− 1 i i+ 1 i+ 2 · · · n

· · · · · ·

///////////// ������

������

The relation TiTi+1Ti = Ti+1TiTi+1 can be pictorially seen as the following
equality of braids:

(6.2)

?????

????????????

?????

��������

���

}}}}

����

????
????????????

?????

?????
����

}}}

��������

����

6.3. Quantum Yang–Baxter equation. Let (A,R) be an almost cocomu-
tative bialgebra and let V be an A–module.

Proposition. The assignment Ti 7→ R∨i,i+1 extends to a representation of Bn on
V ⊗n if and only if

R12R13R23 = R23R13R12

holds.

Proof. The relation TiTj = TjTi for |i−j| > 1 is clear. For the braid relations
it suffices to consider the case of n = 3 and prove

R∨12R
∨
23R

∨
12 = R∨23R

∨
12R

∨
23

We begin by simplifying the left–hand side :

L.H.S. = (12)R12(23)R23(12)R12

= (12)(23)(12)R23R13R12

Similarly the right–hand side is same as (23)(12)(23)R12R13R23 and we are done.
�

6.4. Quasi–triangular Hopf algebras. Let (A,R) be an almost cocommu-
tative Hopf algebra. We say A is quasi–triangular if the following (hexagon) axioms
hold:

(QT1) ∆⊗ 1(R) = R13R23

(QT2) 1⊗∆(R) = R13R12

The origin of these axioms can be explained using the braid diagrams:
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(QT1) Let V,W,U be three A–modules. Consider the following equality of braids:

/////////////

/////////////

�����

����

�����

U V W

V W U

?????????

?????????

����

����
����

����

U V W

V W U

This implies the following equation for morphisms V ⊗W ⊗ U → U ⊗ V ⊗W :

R∨V⊗W,U = (R∨V,U ⊗ 1W ) ◦ (1V ⊗R∨W,U
which is equivalent to:

(123)(∆⊗ 1)(R) = (12)R12(23)R23

This equation is same as the axiom (QT1).

(QT2) can be similarly explained by the equality of the following braids:

?????????

?????????��������

����
��������

����

?????????

?????????

����

����
����

����

6.5.

Proposition. If (A,R) is a quasi–triangular Hopf algebra, then the quantum Yang–
Baxter equation holds for R.

Proof.

R12R13R23 = R12(∆⊗ 1)(R)

= (∆21 ⊗ 1)(R)R12

= R23R13R12

�

6.6.

Proposition. Let (A,R) be a quasi–triangular Hopf algebra. Then we have the
following:

(1)
(ε⊗ 1)(R) = 1⊗ 1 = (1⊗ ε)(R)

(2)
(S ⊗ 1)(R) = R−1

(3)
(S ⊗ S)(R) = R
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Proof. (1): apply (ε⊗1⊗1) to both sides of the equation (∆⊗1)(R) = R13R23,
and use (ε⊗ 1)(∆(a)) = 1⊗ a to get:

R23 = (ε⊗ 1⊗ 1)(R13)R23

which implies that (ε⊗ 1)(R) = 1. The proof of the other equation is similar.

(2): Apply m12 ◦ (S⊗1⊗1) to both sides of the equation (∆⊗1)(R) = R13R23

and use the axiom (m ◦ (S ⊗ 1) ◦∆)(a) = ε(a) to get:

(ε⊗ 1)(R) = (S ⊗ 1)(R).R

which together with (1) implies that (S ⊗ 1)(R) = R−1.

(3): apply m23 ◦ (S ⊗ S ⊗ 1) to the equation (1⊗∆)(R) = R13R12 to get:

(1⊗ ε)(R) = (S ⊗ S)(R)(S ⊗ 1)(R)

which proves (3) using (1) and (2). �

Remark. The category of modules over A, for a quasi–triangular Hopf algebra A
is a braided tensor category.

6.7. R–matrix for U . Recall that the coproduct ∆ : U → U ⊗ U is given by:

∆(K) = K ⊗K
∆(E) = E ⊗ 1 +K ⊗ E

∆(F ) = F ⊗K−1 + 1⊗ F

Let τ be an algebra anti–automorphism of U defined by τ(K) = K−1 and τ(E) = E,
τ(F ) = F . We can twist ∆ by τ to define another coproduct:

∆τ := (τ ⊗ τ) ◦∆ ◦ τ

Explicitly, ∆τ is given by:

∆τ (K) = K ⊗K
∆τ (E) = E ⊗ 1 +K−1 ⊗ E

∆τ (F ) = F ⊗K + 1⊗ F

We aim at constructing Θ such that

(6.3) ∆(u)Θ = Θ∆τ (u) for every u ∈ U

Drinfeld’s ansatz: We look for Θ of the following form:

Θ =
∑
n≥0

anF
n ⊗ En where an ∈ k

Thus we try to solve for an ∈ k so that Θ =
∑
n≥0 anF

n ⊗ En satisfies (6.3).
It is clear that the equation (6.3) holds for u = K without any constraints on a′ns.
Let us begin by considering (6.3) for u = E:

(E ⊗ 1)Θ−Θ(E ⊗ 1) = −(K ⊗ E)Θ + Θ(K−1 ⊗ E)
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L.H.S. =
∑

an[E,Fn]⊗ En

=
∑

an[n]qFn−1[K; 1− n]⊗ En

R.H.S. = −
∑

an(KFn − FnK−1)⊗ En+1

= −
∑

an(q − q−1)q−n
Kq−n −Kqn

q − q−1
⊗ En+1

= −
∑

anq
−n(q − q−1)Fn[K;−n]⊗ En+1

Therefore we get the following constraint on the coefficients:

an+1 = −an
q−n(q − q−1)

[n+ 1]q
which has the unique solution given by:

an = (−1)n
(q − q−1)n

[n]q!
q−n(n−1)/2a0

Next let us consider the equation (6.3) for u = F :

Θ(1⊗ F )− (1⊗ F )Θ = (F ⊗K−1)Θ−Θ(F ⊗K)

L.H.S. =
∑

anF
n ⊗ [En, F ]

=
∑

[n]qanFn ⊗ En−1[K;n− 1]

R.H.S. =
∑

anF
n+1 ⊗ (K−1En − EnK)

= −
∑

anq
−n(q − q−1)Fn+1 ⊗ En[K;n]

and we obtain the same recurrence relation for a′ns. Hence we have proved:

Proposition.

Θ =
∑
n≥0

(−1)nq−n(n−1)/2 (q − q−1)n

[n]q!
Fn ⊗ En

is the unique solution of (6.3).

Remark. (1) Let us define {n} := q2n−1
q2−1 so that we have [n]q = q−(n−1){n}.

In this notation Θ can be rewritten as:

Θ =
∑
n≥0

(−1)n
(q − q−1)n

{n}!
Fn ⊗ En

or more compactly Θ = expq(−(q − q−1)F ⊗ E), where we define the
q–exponential as:

expq(x) :=
∑
n≥0

xn

{n}!

(2) Θ defined above does not lie in U ⊗ U . However for any two finite–
dimensional U–modules M,N , Θ can be evaluated to give a well–defined
element ΘM,N ∈ End(M ⊗N), which has the following properties:
(a) ΘM,N preserves weight spaces of M ⊗N .
(b) ΘM,N on a given weight space is unipotent (and hence invertible).
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6.8. Consider the following subset of k×:

Λ̃ := {±qn : n ∈ Z} ⊂ k×

We have proved that for every finite–dimensional representation of U , say M , we
have the weight space decomposition:

M =
⊕
λ∈eΛ

Mλ

Consider a function f : Λ̃× Λ̃→ k× and extend it to an operator f̃ : M ⊗N →
M ⊗N by:

f̃ |Mλ⊗Nµ = f(λ, µ).Id

Proposition. Let Θf := Θ ◦ f̃ . Then Θf satisfies

(6.4) ∆(u) ◦Θf = Θf ◦∆21(u)

for every u ∈ U if, and only if

(6.5) f(q2λ, µ) = µ−1f(λ, µ) f(λ, q2µ) = λ−1f(λ, µ)

Proof. Since both Θ and f̃ preserve the weight space decomposition, the equa-
tion (6.4) holds for any f . It remains to check (6.4) for u = E,F . Let us begin by
rewriting (6.4):

∆τ (u) ◦ f̃ = f̃ ◦∆21(u)

For u = E, we simplify this equation on Mλ ⊗Nµ as:

L.H.S. = ∆τ (E) ◦ f̃ |Mλ⊗Nµ

= f(λ, µ)(E ⊗ 1 +K−1 ⊗ E)|Mλ⊗Nµ

= f(λ, µ)(E ⊗ 1 + λ−11⊗ E)

R.H.S. = f̃ ◦∆21(E)|Mλ⊗Nµ

= f̃ ◦ (1⊗ E + E ⊗K)|Mλ⊗Nµ

= f(λ, q2µ)(1⊗ E) + µf(q2λ, µ)(E ⊗ 1)

which finishes the proof. �

Remark. As a corollary we obtain an intertwiner M ⊗ N → N ⊗M for finite–
dimensional modules M,N of U :

M ⊗N
Θf◦(12) // N ⊗M

for any solution f of (6.5).

6.9. QYBE. The aim of this section is to prove that the quantum Yang–
Baxter equation holds for the intertwiner (12)◦Θf . We will begin by some prepara-
tory results:

Lemma. (1)

∆(En) =
n∑
r=0

[
n
r

]
q

qr(n−r)En−rKr ⊗ Er
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(2)

∆(Fn) =
n∑
r=0

[
n
r

]
q

qr(n−r)F r ⊗ Fn−rK−r

(3)

anam = qnm
[
n+m
n

]
q

an+m

Define Θ′ and Θ′′ as:

Θ′ =
∑
n≥0

anF
n ⊗Kn ⊗ En

Θ′′ =
∑
n≥0

anF
n ⊗K−n ⊗ En

(4)
f̃12 ◦Θ13 = Θ′ ◦ f̃12

(5)
f̃23 ◦Θ13 = Θ′′ ◦ f̃23

(6)
f̃12f̃13Θ23 = Θ23f̃12f̃13

(7)
f̃23f̃13Θ12 = Θ12f̃23f̃13

Proof.
(1) The proof is by induction on n. For n = 1 we have by definition:

∆(E) = E ⊗ 1 +K ⊗ E

Assume the assertion of (1) of Lemma for n ≥ 1. Then we get:

∆(En+1) = (E ⊗ 1 +K ⊗ E)

(
n∑
r=0

qr(n−r)
[
n
r

]
q

En−rKr ⊗ Er
)

=
n+1∑
r=0

(
qr(n−r)

[
n
r

]
q

+ q(r+1)(n+1−r)
[

n
r − 1

]
q

)
En+1−rKr ⊗ Er

=
n+1∑
r=0

qr(n+1−r)
[
n+ 1
r

]
q

En+1−rKr ⊗ Er

(2) the proof is same as that of (1).
(3)

anam = (−1)n+m(q − q−1)n+mq−
n(n−1)+m(m−1)

2
1

[n]q!
1

[m]q!

=
[
n+m
n

]
q

qnm(−1)n+mq−
(n+m)(n+m−1)

2 (q − q−1)n+m 1
[n+m]q!

= qnm
[
n+m
n

]
q

an+m
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(4) We compute both sides of (4) on tensor product of weight spaces of weights
λ, µ, ν. For each n ≥ 0 we have:

f̃12 ◦ (Fn ⊗ 1⊗ En)|Mλ⊗M ′µ⊗M ′′ν = f(q−2nλ, µ)(Fn ⊗ 1⊗ En)

= µnf(λ, µ)(Fn ⊗ 1⊗ En)

= (Fn ⊗Kn ⊗ En) ◦ f̃ |Mλ⊗M ′µ⊗M ′′ν

where we have used the identity (6.5).
(5) the proof is same as that of (4).
(6) Again we compute the operator f̃12f̃13Θ23 on a tensor product of weight

spaces Mλ ⊗M ′µ ⊗M ′′ν .

f̃12f̃13(1⊗ Fn ⊗ En)|Mλ⊗M ′µ⊗M ′′ν = f(λ, q−2nµ)f(λ, q2nν)(1⊗ Fn ⊗ En)

= f(λ, µ)f(λ, ν)(1⊗ Fn ⊗ En)

= (1⊗ Fn ⊗ En)f̃12f̃13|Mλ⊗M ′µ⊗M ′′ν

(7) the proof is same as that of (6).
�

Proposition. (1)
(∆⊗ 1)Θ = (1⊗Θ)Θ′′

(2)
(1⊗∆)Θ = (Θ⊗ 1)Θ′

Proof. We prove (1) only.

(∆⊗ 1)Θ =
∑

an∆(Fn)⊗ En

=
∑
n≥0

an

(
n∑
r=0

ar(n−r)
[
n
r

]
q

F r ⊗ Fn−rK−r
)
⊗ En

=
∑
n≥0

0≤r≤n

anq
r(n−r)

[
n
r

]
q

(1⊗ Fn−r ⊗ En−r)(F r ⊗K−r ⊗ Er)

=
∑
n≥0

0≤r≤n

an−rar(1⊗ Fn−r ⊗ En−r)(F r ⊗K−r ⊗ Er)

= (1⊗Θ)Θ′′

�

Theorem.
Θf

12Θf
13Θf

23 = Θf
23Θf

13Θf
12

Proof. Using (4)–(7) of Lemma 6.9 the above equation can be shown to be
equivalent to:

Θ12Θ′Θ23 = Θ23Θ′′Θ12

Using (2) of Proposition 6.9 the left–hand side of this equation is simplified as:

Θ12Θ′Θ23 = (1⊗∆)Θ.Θ23

= Θ23(1⊗∆τ )Θ
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Thus we are reduced to proving that (1⊗∆τ )Θ = Θ′′Θ12 which follows directly
from (2) of Proposition 6.9 and definition of τ . �

6.10. Hexagon axioms. Let αM,N : M ⊗N → N ⊗M be the commutativity
constraint given by Θf ◦ (12). In order to establish the hexagon axioms for this
intertwiner we will need the following constraints on f :

(6.6) f(λµ, ν) = f(λ, ν)f(µ, ν) f(λ, µν) = f(λ, µ)f(λ, ν)

Proposition. The following diagrams commute if and only if (6.6) holds for f .

M ⊗M ′ ⊗M ′′
1⊗αM′,M′′

((RRRRRRRRRRRRR

αM⊗M′,M′′ // M ′′ ⊗M ⊗M ′

M ⊗M ′′ ⊗M
αM,M′′⊗1

66lllllllllllll

M ⊗M ′ ⊗M ′′
αM,M′⊗M′′ //

αM,M′⊗1 ((RRRRRRRRRRRRR M ′ ⊗M ′′ ⊗M

M ′ ⊗M ⊗M ′′
1⊗αM,M′′

66lllllllllllll

Proof. We will only focus on the first of the two diagrams. The top arrow is
given by:

(1⊗∆)(Θ ◦ f̃) ◦ (123)
which on a tensor product of weight spaces Mλ ⊗M ′µ ⊗M ′′ν is given by:

(1⊗∆)(Θ)f(ν, λµ)(123)

Now we compute the other homomorphism:

Θ12f̃12(12)Θ23f̃23(23) = Θ12f̃12Θ13f̃13(123)

Using the commutation relation (4) of Lemma 6.9 we get

= Θ12Θ′f̃12f̃13(123)

which evaluated on a tensor productMλ⊗M ′µ⊗M ′′ν is given by Θ12Θ′f(ν, λ)f(ν, µ)(123).
Comparing the two computations the assertion follows by Proposition 6.9. �

6.11. We have proved that the category of finite–dimensional representations
of U has a braided tensor structure with commutativity constraint given by Θf ◦(12)
provided we can find f satisfying (6.5) and (6.6). Using (6.5) iteratively, we have
the following constraints on f :

f(ε1q2n, ε2q
2m) = εm1 ε

n
2 q
−2nmf(ε1, ε2)

f(ε1q2n+1, ε2q
2m) = εm1 ε

n
2 q
−(2n+1)mf(ε1q, ε2)

f(ε1q2n, ε2q
2m+1) = εm1 ε

n
2 q
−n(2m+1)f(ε1, ε2q)

f(ε1q2n+1, ε2q
2m+1) = εm1 ε

n
2 q
−(2n+1)m−nf(qε1, qε2)

Thus we can freely choose any values for f(ε1qa, ε2qb) for ε1, ε2 ∈ {±1} and a, b ∈
{0, 1} and get a solution of (6.5) using the above relations.
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However we can only solve (6.6) if q admits a square–root in k. To see this, we
observe that (6.6) implies that f(qa, qb) = f(q, q)ab. Thus we have

f(q, q2) = q−1 (by (6.5))

= f(q, q)2 (by (6.6))

Hence f(q, q)−1 is a square–root of q.

Even with the assumption that q admits a square–root, a solution f of (6.5)
and (6.6) cannot be found for the full Λ̃:

f(−1, 1)2 = f(−1, 1) = 1

f(−1, q2) = f(−1, q)2 = f(1, q) = 1

= −f(−1,−1) = −1

which is a contradiction. Let us define Λ := qZ. The previous arguments imply
that we can solve for f restricted to Λ, but not for Λ̃. This prompts the following

Definition. A finite–dimensional representation V of U is said to be of type I (or
II respectively) if the set of weights of V , denoted by P (V ) is a subset of Λ (or −Λ
respectively).

The category of type I representations of U forms a braided tensor category.
However the category of type II representations only forms a module category over
the category of type I representations.





CHAPTER 3

Quantum affine sl2: Uqŝl2

1. Two Presentations of Uq ŝl2

Recall that ŝl2 as a central extension of sl2[t, t−1] was presented on {ei, fi, hi}i=0

with

e1 = e⊗ t0 f1 = f ⊗ t0 h1 = h⊗ t0(1.1)

e0 = f ⊗ t f0 = e⊗ t−1 h1 = −h⊗ t0 + c(1.2)

with the relations

[hi, hj ] = 0(1.3)

[hi, ej ] = aijej [hi, fj ] = −aijfj(1.4)

[ei, fj ] = δijhi(1.5)

ad(ei)1−aijej = ad(ei)3ej = 0(1.6)

ad(fi)1−aijfj = ad(fi)3fj = 0(1.7)

where

A = (aij) =
(

2 −2
−2 2

)
and

ad(x)n = (`(x)− r(x))n =
n∑
k=0

(
n

k

)
`(x)kr(x)n−k(−1)−1

1.1. Definition. Uq ŝl2 is the associated algebra over k with generators X±i ,
K±i for i = 0, 1 and the relations

KiK
−1
i = K−1

i Ki = 1(1.8)

K0K1 = K1K0KiX
±
j K

−1
i = q±aijX±j(1.9)

[X+
i , X

−
j ] = δij

Ki −K−1
i

q − q−1
(1.10)

(X±i )3X±j − [3](X±i )2X±j X
±
i + [3]X±i X

±
j (X±i )2 −X±j (X±i )3 = 0(1.11)

The above algebra is a Hopf Algebra with coproduct

∆(Ki) = Ki ⊗Ki(1.12)

∆(X+
i ) = X+

i ⊗Ki + 1⊗X+
i

∆(X−i ) = X−i ⊗ 1 +K−1
i ⊗X

−
i

51
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and antipode

S(Ki) = K−1
i(1.13)

S(X+
i ) = −X+

i K
−1
i

S(X−i ) = Ki ⊗X−i
In addition we have the following presentation due to Drinfeld:

1.2. Theorem. Uq ŝl2 is homomorphic to the associative algebra over C with
generators x±k for k ∈ Z, hk for k ∈ Z×, K±1 and central elements C±1(= qC) such
that

(QR 1)
CC−1 = C−1C = KK−1 = K−1K = 1

(QR 2)

[hk, h`] = δk,−`
1
k

[2K]
Ck − C−k

q − q−1

(QR 3)
Khk = hkK

To make sense of the above we can think of hk → h(k) = h ⊗ tk as
q → 1. To make sense of (QR 2) recall that in ŝl2 we have [h(k), h(`)] =
[h, h](k + `) + kδk+`0(h, h)c = 2kδk+`,0c. Then under the degeneration
q → 1

Ck − C−k

q − q−1
=
qkc − q−kc

q − q−1
→ kc

Note however that K = qh(0) is exponentiated while hk is not.

(QR 4)
Kx±kK

−1 = q±2x±K

Where x+
K −−→q=1

e(k) and x−K −−→q=1
f(k).

(QR 4)
x±k+1x

±
` − q

±2x±` x
±
k+1 = q±2x±k x

±
`+1 − x

±
`+1x

±
k

This corresponds to the fact that for q = 1, [x±(k + 1), x±(`)] =
[x±(k), x±(`+ 1)].

(QR 5)

[x±k , x
−
` ] =

1
q − q−1

(Ck−`ψk+1 − Φk+1)
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where ∑
k≥0

ψku
k = Kexp

(q − q−1)
∑
k≥1

hku
k


∑
k≥0

Φkuk = Kexp

−(q − q−1)
∑
k≥1

hku
k


Remark: We note here that there is another system of generators

and relations that can be nested in these relations. Namely,ψ(u)K−1 =
exp((q − q−1)h+(u) implies that h+(u) = log(ψ(u)K−1)/(q − q−1).

Proof. We need to show that the algebra we have defined above is indeed
homomorphic to Uq ŝl22. But we can simply give the homomorphism explicitly as:

K0 7→ CK−1, K1 7→ K X±1 7→ x±0

X+
0 7→ x−1 K

−1 X−0 7→ C−1Kx+
−1

The first three maps are obvious, the last two less so but it can be shown that all
together they define an isomorphism of algebras. �

Remark: ∀i ∈ Z there is a copy of the Uqsl2 contained in Uq ŝl2 given by

E 7→ x+
i F 7→ C−ix−−i K 7→ KCi

This can be checked by looking at the classical case: [e(n), f(−n)] = h(0) +
n(e, f)c = h(0) + nc and using then checking the relation under the image of the
morphism:

[x+
i , C

−ix−−i] = C−i
C2iψ0 − Φ0

q − q−1
=
CiK − C−iK−1

q − q−1

2. Finite Dimensional Representations of Uq ŝl2

Let H be the subalgebra of Uq ŝl2 generated by C, K and hk and let N± be the
subalgebra of Uq ŝl2 generated by C, K and X±k

Proposition. Uq ŝl2 ∼= N− ⊗H ⊗N+ (PBW)

Now, recall that when we spoke of catagory O of ĝ we used the triangulation
given by

ĝ = ĝ− ⊕ ĥ⊕ ĝ+ =
(
t−1g[t−1]⊕ n−

)
⊕ ĥ⊕ (tg[t]⊕ n+)

Definition. A vector Ω in a U -module V is highest weight if it is both an eigen-
vector of K±1, C±1 and hk and if x+

k Ω = 0 ∀k ∈ Z.

We say V is a highest weight module if it is generated by a highest weight
vector.

Note, unlike category O we do not require the q-version of ĝ+ (ie X+
0 ) to

annihilate Ω for it to be of highest weight.

Theorem. Let V be a finite dimensional U -module. Then
(1) C = C−1 on V
(2) H = {hk,K+±1, C±1} acts by commuting operators on V
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(3) There exists a highest weight vector Ω in V .

Proof. (3) We will prove this by contradiction. Suppose there does not exists
v ∈ V \{0} annihilated by all x+

k . Let v ∈ V be an eigenvector of K, ie Kv = λK.
Then there exists a never zero sequence n, x+

k v, x
+
k x

+
k v, . . . in V . The then these

have eigenvalues λ, q2λ, q4λ, . . . contradicting the assumption that dim V < ∞.
Therefore, V0 = {v ∈ V |x+

k v = 0∀k ∈ Z} 6= 0 and is acted on by K0 and K1.

Consider Ω ∈ V0 a simultaneous eigenvector of K0 and K1. Then the action of
v1 =< X+

1 , X
−
1 ,K1 > on Ω is given by K1Ω = ε1q

n1Ω for ε ∈ {±1} and n1 ≥ 0.
Similarly the action of v0 =< X+

1 , X
−
1 ,K1 > is given by K0Ω = ε0q

n0Ω where
ε0 ∈ {±1} and n0 ≤ 0 since Ω is lowest weight for v0.

But now, CΩ = K0K1Ω = (ε0ε1)qn0+n1Ω and soK1C
iΩ = ε1(ε0ε1)iqi(n0+n1)+n1Ω.

Since Ω is a highest weight vector for (Uqsl2)i for all i ∈ Z, i(n0 + n1) + n1 ≥ 0 for
all i ∈ Z. But this is only possible if n0 + n1 = 0.

From the argument in the preceding paragraph, CΩ = ±Ω for any Ω ∈ V0, so
C = C−1 on V0. Then, sinceH preserves V0, H acts on V0 by a commuting operator.

(1) Now, since C is central we can decompose V into V =
⊕

µ V
µ where C acts

by µ on V µ and V µ is a submodule. But each V µ had a nonzero V µ0 and C acts
by ±1 on it so µ = µ−1 and µ = ±1 only. Therefore C = C−1 on V whether V is
irreducible or not.

(2) Property (1) clearly implies property (2).
�

Corollary. Every finite dimensional representation of Uq ŝl2 is highest weight.

3. The Drinfeld Polynomial

For a finite dimensional representation there exists Ω ∈ V such that x±k Ω = 0
for all k ∈ Z. Then

ΦrΩ = d+
r Ω(3.1)

ψrΩ = d−r Ω(3.2)

for some pair d = {d+
k , d

−
k }k≥0 ⊂ C. Conversely, we can construct an irreducible

highest weight representation such that (3.1) and (3.2) hold: Let

V (d) = Uq ŝl2/(N+ + (Φr − d−r ) + (ψr − d+
r ))

where

d+(u) =
∑
r≥0

d+
r u

r ∈ C[[u]]

d−(u) =
∑
r≥0

d−r u
−r ∈ C[[u]]

Theorem. (Drinfeld, Chao-Pressley) V (d) is finite dimensional if and only if there
exits a polynomial P ∈ C[u] with P (0) 6= 0 such that

ψ(u)Ω = qdeg P
P (q−2u)
P (u)

Ω = Φ(u)Ω
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Where the equality is understood to be as formal power series, ie where 1
1+uQ =

1−uQ+u2Q2−. . .. Then P is called the Drinfeld Polynomial of the representation.

We will need the following result:

Proposition. There exists a sequence {Pr}r≥0 ⊂ H =< K,hK > /(c − 1) such
that

(1) P (u) =
∑
r≥0 u

rPr ∈ H[[u]] where ψ(u) = K P (q−2u)
P (u)

(2) Pr ≡ (−1)rqr
2
(x+

0 )(r)(x−1 )(r) mod N+

(3) (−1)rqr(r−1)(x+
0 )(r−1)(x1)(r) ≡ −

∑r
s=1 x

−
s Pr−sK

r−1 mod N+ where X(r) =
Xr

[r]!

Proof. (Of Theorem) ⇒

First, rephrasing slightly

ψ(u)Ω = qd
P (q−2u)Ω
P (u)

evaluating at u = 0 we get that ψ0 = KΩ = qdΩ for some d ∈ Z since V (d) is finite
dimensional. So deg P = d.

Lets apply (1) to Ω: since ψ(u)Ω = d+(u)Ω

P (u)Ω =
∑
r≥0

PrΩ =
d∑
r≥0

PrΩ =
d∑
r≥0

prΩ

where pr is the eigenvalue of Pr on Ω. Note that the second equality comes from
the fact that by (2), PrΩ = 0 for r > d. Then, if p(u) =

∑d
r≥0 pr,

d+(u)Ω = qd
p(q−2u)
p(u)

Ω

We now need to show that the same P (u) works for d−(u). To do this we apply
(3) to Ω with r = d+ 1:

d∑
s=0

x−d+1−sP
+
s K

d = 0

Now, KΩ = qdΩ so PsK
dΩ = (qd

2
)Pd+1−sΩ. Apply x+

n−d−1 to both side of the
above and use

[x+
n−d−1, x

−
d+1−s] =

ψn−s − Φn−s
q − q−1

to get
1

q − q−1

d∑
s=0

(ψn−s − Φn−s)PsΩ =
d∑
s=0

(d+
n−s − d−n−s)Ps = 0

If we take n large enough, the smallest n− s can be is when s = d, so for n ≥ d+ 1
since d− has no positive coefficient

(1) for n ≥ d+ 1:
∑d
s=0 d

+
n−sP

+
s = 0

(2) for 0 ≤ n ≤ d:
∑n
s=0 d

+
n−sP

+
s =

∑d
s=n d

−
n−sP

+
s

(3) for n ≤ −1:
∑d
s=0 d

−
n−sP

+
s = 0
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Now, from ψ(u)Σ = qd P
+(q−2u)
P+(u) Ω we get
r∑
s=0

P+
s d

+
r−s = qdq−2rp+

r(3.3)

Since pn = 0 for n < 0 we can rewrite (2) as
d∑

s=n

d−n−sP
+
s = 0

and so ∀n ≤ d,
d∑

s=n

d−n−sP
+
s = qd−2nP+

n(3.4)

We claim that these two facts together imply that

Φ(u)Σ = qd
P (q−2u)
P (u)

(3.5)

when we consider the right hand side as expanded in powers of u−1. To see
this we note that

P (u) =
d∑
r=0

Pru
r = ud

d∑
r=0

Pru = ud
d∑
r=0

Pd−ru
−r

and

P (q−2u) = q−2dud
d∑
r=0

Pd−ru
−rq2r

so the right hand side of (3.5) is∑d
r=0 q

−d+2rPd−ru
−r∑d

r=0 Pd−ru
−r

and so, given that Φ(u)Ω =
∑
r≥0 u

−rd−−rΩ, (3.5) reads∑
s=0

d−−sP
+
d−(r−s) = q−d+2rp+

d−r(3.6)

For n = d− r, (n ≤ d ≡ r ≥ 0) this is
d−n∑
s=0

d−−sP
+
n+s =

d∑
s=0

d−n−sp
+
s = qd−2np+

n

which is exactly what we want.

Therefore V (d) is finite dimensional only if there exists a polynomial P ∈ C[u]
such that P (0) = 1 and∑

k≥0

dku
k = qdeg P P (q−2u)

P (u)
=
∑
k≤0

dku
k

We digress briefly now to prove the proposition and will then finish the proof
of the theorem.

�
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Proof. (Of Proposition) (1): First,

ψ(u) = K
P (q−2u)
P (u)

≡
r∑
s=0

ΨsPr−s = KPrq
−2r

for all r ≥ 0. Now, the left hand side of (1) is

ψ0Pr +
∑
s=1

ψsPr−s

So K(q−2r − 1)Pr =
∑r
s=1 ψsPr−s for r ≥ 1 or

Pr =
K−1

q−2r − 1

r∑
s=1

ψ0Pr−s

(2): This follows from (3) and the recursion above. Start from (3) and multiply
on the left by x+

0 to get

[r](−1)rqr(r−1)(x+
0 )(r)(x−0 )(r) = −

r∑
s=1

ψs(q − q−1)−1Pr−sK
r−1 = Krq−r[r]Pr

as claimed.

(3): Recall that we cant multiply on the right since we’re working modulo a
right ideal so to prove by induction we need away to write x−1 (x+

0 )(r)(x1)(r) in terms
of (x+

0 )(r)(x1)(r+1) so we need to perform the following computations:

(QGR 1)

[x−, (x+
0 )r+1] =

1
[r + 1]!

r∑
j=0

(x+
0 )[x−1 , x

+
0 ](x+

0 )r−j

=
1

[r + 1]!

r∑
j=0

(x+
0 )jKh1(x+

0 )r−j

=
−K

[r + 1]!

r∑
j=0

q−2j(x+
0 )jh1(x+

0 )r−j

(QGR 2)

[h1, (x+
0 )r] =

r−1∑
s=0

(x+
0 )j [h1, x

+
0 ](x+

0 )r−1−j

= [2]
r−1∑
j=0

(x+
0 )jX+

1 (X+
0 )r−1−j

= [2]X+
1 (X+

0 )r−1
r−1∑
j=0

q−2j

= [2][r]x+
1 (x0)r−1q−r+1
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Where the second equality come from [h1, x
+
k ] = [2]xk+1 and the third

from ∑
j=0

r − 1q−2j =
q2r − 1
q−2 − 1

= q−r−1[r]

and
x+

1 x
+
0 − q2x+

0 x
+
1 = q2x+

0 x
+
1 − x

+
1 x

+
0

(QGR 1) Continued. Now:

[x−1 , (x
+
0 )(r+1)] = − K

[r + 1]!
(x+

0 )rh1q
−r[r + 1]

= − K

[r + 1]!

r∑
j=0

q−2j(x+
0 )j [2][r − j]x+

1 (x+
0 )r−j−1q−r+j+1[r + j]

= −q−rK(x+
0 )rh1 − q−2(r−1)Kx+

1 (x+
0 )(r−1)

(QGR 3) By a similar proof we have

[x+
0 , (x

−(r+1)
1 ] = qrKx

−(r)
1 h1 −Kx−(r−1)

1 x−2

Now, (−1)rqr(r−1)(x+
0 )(r−1)(x−1 )(r) = −

∑r
s=1 x

−
s Pr−xK

r−1 mod N+ so by
multiplying both sides by x−1 on the left we get

[r + 1](−1)rqr(r−1)(x+
0 )(r−1)(x−1 )(r+1)

−(−1)rqr(r−1)
(
q−rK(x+

0 )(r)h1 + q−2r+2Kx+
1 (x+

0 )(r−1)
)

(x−1 )(r) = −
r∑
s=1

x−1 x
−
s Pr−sK

r−1

Multiplying by x+
0 on the left we get

[r][r + 1](−1)rqr(r−1)(x+
0 )(r)(x−1 )(r+1) =

(−1)rqr(r−1)x+
0

(
q−rK(x+

0 )(r)h1 + q−2r+2Kx+
1 (x+

0 )(r−1) −
∑)

(x−1 )(r) −
r∑
s=1

x+
0 x
−
1 x
−
s Pr−sK

r−1

�

Proof. (Of Theorem) ⇐

We want to prove that if there exists a polynomial P such that

d+(u) = qdeg P P (q−2u)
P (u)

= d−(u)

then V (d) is finite dimensional. We will do this by constructing V (d) explicitly.

Our main tool will be a map eva : Uq ŝl2 → Uqsl2. Classically, ŝl2 is just a
loop algebra so for any a ∈ C× we just evauate at a. Assuming we ca find such a
map, we can then pull representations of Uqsl2 back to Uq ŝl2. Since we have a Hopf
algebra structure on Uqsl2 we can then take tensors of Uqsl2 modules.
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Proposition. For all a ∈ C× there exists an algebra homomorphism eva : Uq ŝl2 →
Uqsl2 such that eva(x+

k ) = q−ka
kKkE and eva(x−k ) = q−ka

kKkE.

Proof. We will construct this map using the quantum KM generators:

eva(K1) =K eva(K0) = K−1(3.7)

eva(X+
1 ) =E eva(X+

0 ) = q−1aF

eva(X−1 ) =E eva(X−0 ) = q−1a−1E

so that the composition

Uqsl2 ↪→ Uq ŝl2
eva−−→ Uqsl2

of evaluation with the inclusion map of the constant loops is the identity:

K, E, F 7→ K1, X
±
1 7→ K, E, F

We claim that this extends to a homomorphism. We need to check that

eva : (X±i )3X±
ī
− [3](X±i )2X±

ī
X±i + [3]X±1 Xī(X

±
i )2 −Xī(X

±
i )3 7→ 0

�

Let check for the case i = 1, ī = 0, +:

. . . 7→ q−1a
(
F 3E − [3]F 2EF + [3]FEF 2 − EF 3

)
= 0

we can rewrite this as

[E,F 3]− [3]F [F,E]F = 0

[3]F 2[K;−2]− [3]
FK −K−1F

q − q−1
= 0

[3]F 2[K;−2]− [3]F 2[K;−2] = 0

So the relation check out. In addition the following relations are clear:
eva :

C = K0K1 −→1(3.8)
K = K1 −→K

X±1 −→X
±
0

X+
0 −→x

−
1 K

−1

X−0 −→Kx
+
−1

x−1 = X+
0 K −→q−1aFK

x+
−1 = K−1X−0 −→qa−1K−1E

We can use then derive the rest of the map from the above:

eva(ψ1) = (q − q−1)[x+
0 , x

+
1 ] = (q − q−1)h1K
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and

eva(h1) =eva([x+
0 , x

−
1 ]K−1)

=q−1a([E,FK]K−1)

=q−1a
K −K−1

q − q−1
− q−1aF [E,K]K−1

=q−1a
K −K−1

q − q−1
+ a(q − q−1)FE

�

Next,

[H1, x
±
k ] = ±[2]x±k+1

so we can compute eva(x±k ) by induction on k ≥ 0. For the other relations we
can use Φ1 = −[x+

0 , x
−
−1](q − q−1) to get eva(Φ1), Φ1 = −K−1h−1(q − q−1) to get

eva(h−1) and [h−1, x
+
k ] = ±[2]x±k−1 to get eva(x±k ) for k < 0.

Recall. If Vn is the unique irreducible Type I representation of Uqsl2 of dim n+ 1
then it has a basis v0, . . . vn and Uqsl2 acts on this basis by

Kvi =qn−2ivi

Evi =[n− i+ 1]vi−1

Fvi =[i+ 1]vi+1

Definition. Let Vn(a) := ev∗aVn an irrational representation of Uq ŝl2 of type (I, I).
In particular C acts by +1 since evaC = 1.

Recall. There are two important things to note here: First eva is not a Hopf
Algebra homomorphism. Second, Although we have shown this evaluation map to
exits for Uq ŝl2 and indeed it can be shown to exist for Uq ŝln for a general lie algebra
g there is no guarantee it exists.

Corollary. For n ∈ N and a ∈ C∗ the action of the loop generators x±k on Vn(a)
is given by

eva(x+
k )vi =q−kakKkEvi

=q−kak[n− i+ 1]qk(n−2i+2)vi−1

=akqk(n−2i+1)[n− i+ 1]vi−1

eva(x−k )vi =q−kakFKkvi

=akqk(n−2i−1)[i+ 1]vi+1

so Vn(a) is a highest weight representation with highest weight vector v0.
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The Drinfeld Polynomial of Vn(a). For k ≥ 1

(q − q−1)ψkv0 = [x+
k , x0]v0 = x+

k x
−
0 v0 = x+

k v1 = akqk(n−1)[n]v0 = (aqn−1)k[n]v0

And ψ0v0 = Kv0 = qnv0. So (aqn−1)k[n] and qn are the eigenvalues of ψk so

d+(u) =qn +
∑
k≥1

(aq(n−1))k(qn − q−n)uk

=qn + (qn − q−n)
aqn−1u

1− aqn−1u

=qn
1− aq−n−1u

1− aqn−1u

=qn
P (q−2u)
P (u)

Where

P (u) = (1− aqn−1u)(1− aqn−3u)(1− aqn−5) . . .

P (q−2u) = (1− aqn−3u)(1− aqn−4u)(1− aqn−7) . . .

Example. For n = 1, V1
∼= C2 we have PV1(a) = (1− au).

So now we’re going to try to start from a polynomial of the form (1−aqmu) . . . (1−
aq−mu) and show that it’s the Drinfeld polynomial of some representation. Take
P ∈ C[u] such that P (0) = 1. Then

P = (1− a1u) . . . (1− amu)

and we can construct V (d) from V1(a1)⊗ . . .⊗ V1(am) as follows:

Theorem. V (d) is a subquotient of V1(a1)⊗ . . .⊗ V1(am) where V1(ai) ∼= C2.

In order to prove this we need to understand ∆ on Uq(Lsl2). Recall that by
(1.12)

∆(Ki) = Ki ⊗Ki

∆(X+
i ) = X+

i ⊗Ki + 1⊗K+
i

∆(X−i ) = X−i ⊗ 1 +⊗K−1
i ⊗X

−
i

But what we’re really interested in of course is ∆(ψi) and ∆(Φi), however these are
not known in full in loop generators.

Proposition. Let Ξ± ⊂ Uq(Lsl2) be the subspace generated by the x±k , k ∈ Z. Then

(QDS 1) Modulo UΞ2
+ ⊗ UΞ−

∆(x+
k ) = x+

k ⊗K + 1⊗ x+
k +

k∑
i=1

x+
k−i ⊗ ψi, k ≥ 0(3.9)

∆(x+
−k) = x+

−k ⊗K
−1 + 1⊗ x+

−k +
k−1∑
i=1

x+
−k−i ⊗ φi, k > 0(3.10)
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(QDS 2) Modulo UΞ+ ⊗ UΞ2
−

∆(x−k ) = x−k ⊗ 1 +K ⊗ x−k +
k−1∑
i=1

ψi ⊗ x−k−i, k > 0(3.11)

∆(x−−k) = x−−k ⊗ 1 +K−1 ⊗ x−−k +
k∑
i=1

φ−i ⊗ x+
−k−i, k ≥ 0(3.12)

(QDS 3) Modulo UΞ+ ⊗ UΞ− + UΞ− ⊗ UΞ+

∆(ψk) =
k∑
i=0

ψi ⊗ ψk−i (≡ ∆(ψ(u)) = ψ(u)⊗ ψ(u))(3.13)

∆(Φk) =
k∑
i=0

Φi ⊗ Φ−k+i (≡ ∆(Φ(u)) = Φ(u)⊗ Φ(u))(3.14)

Or, more compactly, for X±≥0 :=
∑
k≥0 x

±
k u

k and X±<0 :=
∑
k<0 x

±
k u

k

(QDS 1) Modulo UΞ2
+ ⊗ UΞ−

∆X+
≥0 = X+

≥0 ⊗ ψ + 1⊗X+
≥0(3.15)

∆X+
<0 = X+

<0 ⊗ Φ + 1⊗X+
<0(3.16)

(QDS 2) Modulo UΞ+ ⊗ UΞ2
−

∆X−≥0 = X−≥0 ⊗ 1 + ψ ⊗X−≥0(3.17)

∆X−<0 = X−<0 ⊗ 1 + Φ⊗X−<0(3.18)

(QDS 3) Modulo UΞ+ ⊗ UΞ− + UΞ− ⊗ UΞ+

∆ψ = ψ ⊗ ψ(3.19)

∆Φ = Φ⊗ Φ(3.20)

Proof. We will use the follwoing scheme for this proof:

(QDP 1) Prove the above for x±k for k = 0, 1
(QDP 2) Use ψ1 = {x+

1 , x
−
0 } to prove the above for ψ1. Use h1 = (q − q−1)K−1ψ1

to prove the above for h1.
(QDP 3) Use [h1, x

±
k ] = ±[2]x±k+1 to prove the above for x±k

(QDP 4) Compute ∆(Φ1) then ∆(h−1) then use [h1, x
±
k ] = ±[2]x±k+1.

(QDP 5) Finally, use ψk = {x+
k , x

−
0 }.
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3.1. (QDP 1). By Drinefelds Realization (3.8) and the Coproduct Structure
(1.12) we have:

∆x+
0 =x+

0 ⊗K + 1⊗ x+
0

∆x−0 =x−0 ⊗ 1 +K−1 ⊗ x−0

and

∆x−1 = ∆(X+
0 )∆(K)

= (X+
0 ⊗K0 + 1⊗X+

0 )K1 ⊗K1

= (x−1 K
−1
1 ⊗K0 + 1⊗ x−1 K

−1
1 )K1 ⊗K1

= x−1 ⊗K0K1 +K1 ⊗ x−1
= x−1 ⊗ C +K ⊗ x−1

Similarly,

∆x+
−1 = CK−1 ⊗ CK−1(X−0 ⊗ 1 +K−1

0 ⊗X−0 )

= CK−1 ⊗ CK−1(C−1Kx+
−1 ⊗ 1 +K−1

0 ⊗ C−1Kx+
−1)

= x+
−1 ⊗ CK−1 + 1⊗ x+

−1

3.2. (QDP 2). Now, since ψ1 = C(q − q−1)[x+
0 , x

−
1 ] we have

∆ψ1 =(q − q−1)C ⊗ C[x+
0 ⊗K + 1⊗ x+

0 , x
−
1 ⊗ C +K ⊗ x−1 ]

=ψ1 ⊗KC2 +KC ⊗ ψ1 + (q − q−1)C ⊗ C[x+
0 ⊗K,K ⊗ x

−
1 ]

=ψ1 ⊗KC2 +KC ⊗ ψ1 + (q − q−1)2KC ⊗KC[2]x+
0 ⊗ x

−
1

where the last equality follows from

x+
0 K ⊗Kx

−
1 −Kx

+
0 ⊗ x

−
1 K = K ⊗K(q−2x+

0 ⊗ x
−
1 − q2x+

0 ⊗ x
−
1 )

Now: ψ1 = (q − q−1)Kh1 ≡ h1 = (q − q−1)K−1ψ1 implies that

∆h1 =(q − q−1)−1K−1 ⊗K−1∆ψ1

=h1 ⊗ C2 + C ⊗ h1 − (q − q−1)[2]C ⊗ C · x+
0 ⊗ x

−
1
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3.3. (QDP 3). Since [h1, x
+
0 ] = [2]x+

1 we have

∆x+
1

= [2]−1
[
h1 ⊗ C2 + C ⊗ h1 − (q − q−1)[2]C ⊗ C · x+

0 ⊗ x
−
1 , x

+
0 ⊗K + 1⊗ x+

0

]
= x+

1 ⊗ C2K + C ⊗ x+
1 − (q − q−1)C ⊗ C[x+

0 ⊗ x
−
1 , x

+
0 ⊗K + 1⊗ x+

0 ]

= x+
1 ⊗ C2K + C ⊗ x+

1 − (q − q−1)C ⊗ C
{

(q2 − 1)(x+
0 )2 ⊗Kx−1 − (q − q−1)x+

0 ⊗ C−1ψ1

}
= x+

1 ⊗ C2K + C ⊗ x+
1 − (q − q−1)(q2 − 1)C(x+

0 )2 ⊗ CKx−1 + Cx+
0 ⊗ ψ1

= x+
1 ⊗ C2K + Cx+

0 ⊗ ψ1 + C ⊗ x+
1 − (q − q−1)(q2 − 1)C(x+

0 )2 ⊗ CKx−1

By induction this yields the coproduct structure ∆(x+
k ) for all K ≥ 2 (although

in practice this might be tedious to compute). (QDP 4) and (QDP 5) follow from
the induction above.

�

4. Tensor Products of Irreducible Uq ŝl2-modules

Recall the definition of eva the evaluation map (3.7) and S the antipode map
(1.13):

eva(K1) =K eva(K0) = K−1

eva(X+
1 ) =E eva(X+

0 ) = q−1aF

eva(X−1 ) =E eva(X−0 ) = q−1a−1E

S(Ki) = K−1
i

S(X+
i ) = −X+

i K
−1
i

S(X−i ) = Ki ⊗X−i
Proposition. eva◦S = S◦evq2a where the S on the right hand side is that of Uqsl2.

Proof. We will check that these agree on the KM generators Ki, X±i . This
is clear for i = 1 since eva on these is just ”the identity,” and for K0. For X±0 we
have the following:

eva ◦ S(X+
0 ) = eva(−X+

0 K
−1
0 ) = −q−1aFK = −qaKF

while

S ◦ evb(X+
0 ) = S(−q−1bF ) = −q−1bKF

so these match provided b = q2a. A similar proof holds for X−0 .
�

Corollary. Vn(a)∗ ∼= Vn(q2a)
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Proof. The action of X ∈ Uq ŝl2 on the left hand side is given by

Xg = g ◦ eva(S(X)) = g ◦ S(evq2a(X))

But as a Uqsl2-mod, V ∗n ∼= Vn so the result follows.
�

We want to determine when the tensor product of two irreducible representa-
tions of is again irreducible.

Definition. Let S ⊂ C× be a finite subset. We call S a q-string if it is of the form
{ζ, q−2ζ, q−4ζ, . . . , q−2rζ}. eg

P (u)Vn(s) = (1− aqn−1u) . . . (1− aq−n−1u)

has roots S = {a−1qn+1, . . . , a−1q−n+1} which are a q-string of length n+ 1.

Definition. Two q-strings S1 and S2 are in general position if either

(1) S1 ∪ S2 is not a q-string
(2) S1 ⊆ S2 or S2 ⊆ S1

Lemma. Any finite subset of C× with multiplicities can be written uniquely as a
union of q-strings in general position.

Theorem. A representation Vn1(a1)⊗ . . .⊗Vnr (ar) is irreducible if and only if the
strings sn1(ai) are in general positions.

Example. The representation V1(a1) ⊗ . . . ⊗ Vr(ar) = C2(a1) ⊗ . . . ⊗ C2(ar) is
irreducible if and only if for all i 6= j either ai = aj or ai 6= q±2aj . In particular
V1(a)⊗n is irreducible. Note that this implies that eva is not a Hopf algebra mor-
phism since V1(a) is reducible as a Uqsl2-module.

Proof. (Of Theorem) First, consider the case r = 2, ie for Vm(a)⊗ Vn(b). We
may assume that m ≥ n since V ⊗W is irreducible iff W ⊗ V is.

Recall the Clebsch-Gordan rules:

Vm ⊗ Vn ∼= Vm+n ⊕ Vm+n−2 ⊕ . . .⊕ Vm−n
as a Uqsl2-module. In fact, the highest weight vector Ωp corresponding to Vm+n−2p ⊆
Vm ⊗ Vn is given by

Ωp =
p∑
i=0

(−1)iqi(n−i+1)[m− p+ i]![n− i]!v(n)
p−i ⊗ v

(m)
i

Take p ≥ 0. We will compute the action of x+
− on Ωp. First,

∆(x+
−1) = x+

−1 ⊗K−1 + 1⊗ x+
−1

and
eva(x+

k )vi = akqk(n−2i+1)[n− i+ 1]vi−1
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so

x+
−1Ωp =

p∑
i=0

(−1)iqi(n−i+1)[m− p+ i]![n− i]!

×
(
q−(n−2i)a−1q−(m−2p+2i+1)[m− p+ i+ 1]v(m)

p−i−1 ⊗ v
(n)
i δi<p

+ a−1q−(n−2i+1)[n− i+ 1]v(m)
p−i ⊗ vi+1δi>0

)

= a−1

{
p−1∑
i=0

(−1)iqi(n−i)+i−n−m−2p−1[m− p+ i+ 1]![n− i]!v(m)
p−i−1 ⊗ v

(n)
i

}

−b−1

{
p−1∑
i=0

(−1)iqi(n−i)+i+1[m− p+ i+ 1]![n− i]!v(m)
p−i−1 ⊗ v

(n)
i

}

=
p−1∑
i=0

(−1)i[m− p+ i+ 1]![n− i]!qi(n−i)+i+1v
(m)
p−i ⊗ v

(n)
i (a−1q−n−m+2p−2 − b−1)

So x+
−1Ωp = 0 if and only if b/a = qn+m−2p+2.

Now, this then implies that

0 = [2]x+
−1Ωp = [h−1, x

+
0 ]Ωp = x+

0 h−1Ωp

so x+
0 h−1Ωp = 0. But h−1Ωp has the same weight as Ωp so h−1Ωp = λΩp and

[h−1, x
−
−k+1][2]−1Ωp = x+

−kΩp = 0

for all k ≥ 0. Similarly, x+
k Ωp = 0 For all k ≥ 0.

In summery, if ba = qn+m−2p+2 then Vm(a)⊗Vn(b) contains a subrepresentation
not containing it’s highest weight component (ie the one generated by Ω0). But
similarly, any such subrepresentation is also a subrepresentation for Uqsl2 ⊂ Uq ŝl2
and so a direct sum of Vm+n−2p’s for some p′s ≥ 1.

Next we will show that Vm(a) ⊗ Vn(b) has a proper subrepresentation con-
taining Ω0 iff (Vm(a) ⊗ Vn(b))∗ ∼= Vn(q2b) ⊗ Vm(q2a). This in turn holds iff
b
a = q−n+m−2p′+2 where p′ = 1 . . . n. Thus Vm(a) ⊗ Vn(b) is an irreducible repre-
sentation iff b

a /∈ {q
±(n+m−2p+2)}np=1.

Exercise. This is equivalent to Sm(a) and Sn(b) begin in general position.
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General Case. First, assume that
⊗
Vni(ai) is irreducible but Sni(ai) and

Snj (aj) are not in general position. Then
⊗
Vni(ai) is homomorphic to

⊗
Vnσ(1)(aσ(1))

for all σ ∈ Sr so we may assume that i = 1 and j = 2, But then by the previous
analysis Vn1(a1)⊗ Vn2(a2) are reducible and so

⊗
Vni(ai) is as well.

It remains to show that
⊗
Vni(ai) is reducible only if the Sni(ai) are in general

position. We will need the following:

Lemma. Suppose the Sni(ai) are in general position and that n1 ≤ . . . ≤ nr. Then
Vn1(a1) ⊗ . . . ⊗ Vnr (ar) is generated by the tensor product of the highest weight
vectors v(n1)

0 ⊗ . . .⊗ v(nr)
0 .

Assuming the lemma holds, then starting from Vn1(a1) ⊗ . . . ⊗ Vnr (ar) with
Sni(ai) in general position. By our analysis of r = 2 and the fact that Sn is gen-
erated by transposes (i i + 1) the above is homomorphic to Vnσ(1)(aσ(1)) ⊗ . . . ⊗
Vnσ(r)(aσ(r)) for all σ ∈ Sn so we may assume as above that n1 ≤ . . . ≤ nr.

Now, by the lemma there exists no proper subrepresentation containing the
highest weight component V , ie the Uq ŝl2-mod generated by v(n1)

0 ⊗ . . .⊗v(nr)
0 since

if W ⊂
⊗
Vni(ai) is a subrepresentation containing V then W⊥ ⊂ (

⊗
Vni(ai))

∗ ∼=⊗
Vni(q

2ai) contains the highest weight component. Then then we have a contra-
diction since the Sni(q

2ai) are in general position.

�

Proof. (Of Lemma) We will prove the lemma by induction on r. First, for
r = 2 we are done by the analysis in the proof of the theorem.

Let Vn(a) :=
⊗
Vni(ai). We claim that Vn(a) is generated by

Ω′ ⊗ v(nr)
nr = v

(n1)
0 ⊗ . . .⊗ vnr−1

0 ⊗ v(nr)
nr

by applying the lowering operators x−k to Ω′ ⊗ v(nr)
nr to get, by the induction hy-

pothesis,
⊗

i<r Vni(ai)⊗ v
(nr)
nr . Then we can get the rest of V by applying x+

0 .

Now, we claim that Ω′⊗ v(nr)
i ∈ VN where VN is the highest weight component

of Vn(a). First, this is true for i = 0 by definition so if we can use induction on i
to prove it for i = nr this will prove that VN = V .

Assume that Ω′ ⊗ vi ∈ VN := UΩ. Let k > 0. Then x−k (Ω′ ⊗ vi) ∈ Vn and

x−k (Ω′ ⊗ vi) = x−k Ω′ ⊗ vi +
k−1∑
j=0

ψjΩ′ ⊗ x−k−jvi

= x−k Ω′ ⊗ vi +
k−1∑
j=0

dj,r−1a
k−j
r Ω′ ⊗ Fviq(k−j)(nr−2j)

= x−k Ω′ ⊗ vi +
k−1∑
j=0

dj,r−1b
k−j
r Ω′ ⊗ Fvi
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where ψjΩ′ = dj,r−1Ω′ and br = arq
nr−2i+1. If we let Ak,r−1 :=

∑k−1
j=0 dj,r−1b

k−j
r

we get the far more readable formula

x−k (Ω′ ⊗ vi) = x−k Ω′ ⊗ vi +Ak,r−1Ω′ ⊗ Fvi

More generally we get

x−k Ω′ ⊗ vi =
r−1∑
j=0

Ak,jv0 ⊗ . . .⊗ Fv0 ⊗ . . .⊗ vi

where F is in the j+ 1 position. The matrix Ak,j is given by Ak,j =
∑k−1
p=0 dp,jb

k−p
j+1

for
ψpv

(n1)
0 ⊗ . . .⊗ v(nj)

0 = dp,jv
(n1)
0 ⊗ v(nj)

0

and bj = qjq
nj−1 when j ≤ r − 1 and bj = ajq

nj−2i+1 when j = r.

Now, if (Ak,j)j=0...r−1,k=1...r is invertible then Ω′ ⊗ vi is a linear combination
of (x−k Ω′⊗ vi where k = 1 . . . r so we’re done. That A is invertible follows from the
fact that

detA = q
Pr−1
j=1 nj

∏
j

bj
∏
j<k

(bk − q2nj bj)

so detA = 0 implies (since bj 6= 0) that bk = q2nj bj for some k < j and so, if k < r,
ak = ajq

nj+ni which violates our assumptions.

�

Corollary. Any finite dimensional representation of Uq ŝl2 of type (I, I) is a tensor
product of irreducible representations. Two such products are isomorphic if and
only if they are obtained by the same tensor factors.

Proof. If V is finite dimensional and irreducible then P = PV = (1−a1u) . . . (1−
amu). Write S = {a−1

i } as a union of q-strings in general position S =
⋃r
j=1 Snj (aj).

Then
⊗r

j=1 Vnj (aj) is irreducible with Drinfeld Polynomial P and so is V . �



CHAPTER 4

Introduction to Statistical Mechanics
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1. Motivation

Statistical Mechanics is the branch of physics that studies the behavior of a
system with a large number of degrees to freedom N >> 1. For example, if we
wanted to study all of a particles of air in a room then N ∼ 1023 (Avagadro’s
number); other examples include say electrons in a piece of coper or magnetic spins
in a bar of iron.

The basic question is how can go from the micro (eq Maxwell’s Equations) to
the macro (eg the Ideal Gas Law PV = nRT )?

↑ ↑ ↓
↑

. ..

. ..
↑ ↓ ↑

↓

. .
.

. .
.

N

�
�
�

�
�
�

�
�
�

��*s
HHY s

	
s

1.1. Example: Ising Spins. A lattice
(say 1-dim) with N sites and each site la-
beled by + ≡↑ or − ≡↓ on a circle.
We call configurations of up and down ar-
rows Microstates (eg. (+,+,−, . . .)). In
the model here there are 2N possible Mi-
crostates.

1.2. Example: Continuous Systems.
Consider a volume V containing N parti-
cles. We impose periodic boundary con-
ditions on V so we can actually think of
the volume as a 3-Torus. Then each par-
ticle has position ~q and momentum ~p and
is endowed with continuous degrees of free-
dom:

• Position ~ϕi = (x, y, z) ∈ T 3

• Momentum ~pi = (px, py, pz) ∈
R3

69



70 4. INTRODUCTION TO STATISTICAL MECHANICS

So this gives use a phase spaceM = T ∗T 3×
. . .×T ∗T 3 which is N copies of the tangent bun-
dle.

In both of the above systems we can con-
strain the microstates of the system by intro-
ducing external conditions, for example conservation of energy for the continuous
system leads to

E =
N∑
i=1

~pi
2

2m

and conservation of energy for the Ising model give us, if the magnetic moment
M = number of up spins - number of down spins, ie

M = µ(µ+ − µ−)

the conservation law E = −MH where H is come constant.

We note that in the following it will often be useful to us to use a ”discrete-
ized” phase space, given by dividing the phase space into cells of a given symplectic
volume (eq. ∂p∂q = h (= ~ in quantum mechanics))

2. The Microcanonical Ensemble

R

R+ δR

The Microcanonical Ensemble (MCE) is the
probability distribution specified by the hypoth-
esis of equal a priori probabilities, ie all mi-
crostates with (N,V,E) are all equally likely.

Set Ω(N,V,E) = # of microstates given
(N,V,E). For example, in the Ising spin model
we have

E = −µH(N+ −N−) = µH(N − 2N+)

so

Ω(N,E) = Ω(N,N+) =
(
N

N+

)
=

N !
N+!(N −N+)!

2.1. Example. Lets consider an ideal gas over a spherical hypersurface in
momentum space R3n. Then

E =
N∑
i=1

~p2
i

2m

and R =
√

2mE. Then

Ω(N,V,E) = ω(N,V,E) ∼ V N R
3N−1δR

h3N
= V NE

3N
2 −1 δE

h3N

where V N is the position factor and δR/h3N is the size of the unit cell.

Let ρ be any probability distribution on the (classical) phase space M . We say
that we are studying ”Equilibrium Statistical Mechanics” if p is invariant under
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time, ie if dpdt = 0. So, is the uniform distribution at equilibrium? Recall that under
Hamiltonian time evolution H(p, q) = E. In general, by Liouville’s Theorem

dp

dt
= {p,H} =

∂p

∂pi

∂H
∂qi
− ∂p

∂qi

∂H
∂pi

Now, the uniform distribution is independent of both pi and qi and so the above
derivative is 0. Therefore it is time independent. It’s importnat to note that there
are of course many more invariant distributions; indeed dp

dt = 0 if p = p(E) since
{H,H} = 0.

3. Temperature

System A System B

For the Ising model, assume that we’ve di-
vided our space into two systems. The to-
tal energy is given by Etot = EA + EB +
Einteraction where in our example we can as-
sume Einteraction = 0. Let Ω(Etot, EA)
be # of states in the combined system
A ⊕ B with combined energy (EA, EB).
So

Ω(Etot, EA) = ΩA(EA)ΩB(EB) = ΩA(EA)ΩB(Etot−
EA)

Since all the states with a fixed Etot are equally likely the probability that A
has energy EA is maximized when

0 =
d

dEA
ln Ω(Etot, EA) =

d

dEA
ln ΩA(EA)− d

dEB
ln ΩB(EB) = βA − βB

where

β =
∂

∂E
ln Ω =

1
kBT

is the definition of temperature and

S = kB ln Ω

is entropy. Note that
∂S

∂E
=

1
T

4. The Canonical Ensemble

In the previous discussion, if B >> A we say that B is a ”heat bath.” In general,
a particular microstate of A is energy EA occurs with probability pj ∝ Ω(Etot−EA)
by assumption where EA << Etot. So we can use a Taylor expansion to get

ln Ω(Etot − EA) ∼= ln Ω(Etot)−
∂ ln Ω
∂E

∣∣∣∣
Etot

+ . . .

or, putting β = ∂ ln Ω
∂E

Ω(Etot − EA) ≈ Ω(Etot)e−βEA

then pj = ce−βEA where c is constant and e−βEA is called the Boltzman weight.
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Now, in the MCE we fixed the energy, in the Canonical Ensemble we will instead
weight by the above. We normalize the Boltzman distribution by the requirement
that ∑

j

pj =
∑
j

ce−βEj = 1

so c−1 =
∑
j e
−βEj = Z where Z is the partition function. So once we know Z we

can easily find

pj =
e−βEj

Z

5. An Alternative Distribution

Consider N -systems, all identical (eg a Ising chain), with total energy E . Let j
label the systems with the same energy and let nj be the number of systems with
energy Ej . Then ∑

j

nj = N

∑
j

njEj = E

As for Ising spins,

Γ({nj}) =
N !∏
j nj !

(Multinomial Coefficients)

is the number of configurations with occupation numbers in nj .

Now, we want to look for a distribution of {nj} which maximizes Γ subject to
the constraint that for

ln Γ = lnN !−
∑
j

lnnj !

=(N lnN −N )−
∑
j

nj lnnj − nj

=N lnN −
∑
j

nj lnnj

(where the second equality is by the Sterling Approximation and the second is by
canceling the N with the nj) we have

δ ln Γ =−
∑
j

(nj lnnj + 1)δnj = 0

where
∑
j δnj =

∑
j Ejδnj = 0.

We now introduce Lagrange multipliers (α, β) such that∑
j

(lnnj + α+ βEj)∂nj = 0
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So now ln n̂j +α+βEj = 0 which implies that n̂j = e−α−βEj is the most likely
distribution. So, choose α such that∑

j

n̂j = e−α
∑
j

e−βEj = N

Then

e−α =
N∑

j e
−βEj

Next, we choose β such that

1
N
∑
j

n̂jEj =

∑
j n̂jEje

−βEj

N
∑
j e
−βEj

=
E
N

Finally, we have pj = nj
N and so

ln Γ =N lnN −
∑
j

(Npj) ln(Npj)

=N lnN −N
∑
j

pj(lnN + ln pj)

=−N
∑
j

pj ln pj





CHAPTER 5

Quantum Groups and Statistical Mechanics

1. One-dimensional Ising model

1.1. Introduction. Phase transitions = a discontinuity of a miscroscopic ob-
servable M in terms of one of the parameters of the
system (E, T ).

Examples:

(a) melting of ice (drastic change of density)
(b) boiling of water
(c) magnetization - here we have a discontinuity at low (room) temperature;

at high temperature there is no discontinuity.

The phase transition can happen only in the thermodynamic over infinite vol-
ume limit (N = #particles →∞)

We will consider the microscopic (rather than measure) observable

M : Σ→ R with 〈M〉 =
∑
σ∈Σ

M(σ) exp(−E(σ)/kT )
Z

where Σ is the state space, Σ = Maps{1, 2, . . . N} → {±1} = {±1}N . The
visualization of this simple model is a line with N particles on it.

1• 2• 3• . . . N•

The energy is:

E(σ) = −J
N∑
i=1

σiσi+1 −H
N∑
i=1

σi

where the first sum of the RHS expresses the internal couplings, and the second
one the external couplings. In this formula we have the following:

• k is the Boltzmann constant;
• H ∈ R is the magnetic field strength;
• J ∈ R is the coupling constraint;
• the periodic boundary conditions hold: σN+1 = σ1.

The Boltzmann weight is

75
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p(σ) = exp(−E(σ)/kT )Z−1 = exp(K
N∑
i=1

σiσi+1 + h

N∑
i=1

σi)Z−1

where we used the notation K =
J

kT
, h =

H

kT
. Z is called the partition

function as is equal to

Z =
∑
σ

exp(K
∑
i

σiσi+1 + h
∑
i

σi).

Using the periodic boundary conditions we infer that the system is translation
invariant:

Take σi : Σ→ R and F (σi1 , σi2 , . . . σik) (for example, M =
1
N

(σ1 + σ2 + · · ·+
σN )). Then

〈F (σi1 , . . . σik)〉 =
∑
σ∈Σ

F (σi1 , . . . , σik) exp(−E(σ)/KT ) = 〈F (σi1+1, . . . σik+1)〉

In particular, we have M =
1
N
〈σ1 +σ2 + · · ·+σN 〉 = 〈σ1〉 = 〈σ2〉 = · · · = 〈σN 〉.

1.2. The partition function and the transfer matrix. We can express
the partition function ZN in a more preferable way using the transfer matrix.

ZN =
∑
σ

exp(K
∑
i

σiσi+1+h
∑
i

σi) =
∑
σ

exp(Kσ1σ2+
h

2
(σ1+σ2)) . . . exp(KσNσ1+

h

2
(σN+σ1))

Analyzing the possible values of a term exp(Kσiσi+1+h
2 (σi+σi+1)), we consider

a 2× 2 matrix T indexed by ±1:

(Tεε′)ε,ε′∈{±1} =
(

exp(K + h) exp(−K)
exp(−K) exp(K − h)

)
T is called the transfer matrix. Computing the trace of the Nth power of T

leads precisely to the partition function:

ZN = Tr(TN ) = λN1 + λN2
where λ1, λ2 are the eigenvalues of T so that λ1 > |λ2| (by Perron-Frobenius,

for example). From here we get

lnZn
N

= lnλ1 +
1
N

ln

(
1 +

(
λ2

λ1

)N)
N→∞−→ lnλ1
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Consider the free energy, FN = −KT lnZ, then the free energy per unit site is:

f = lim
N→∞

FN
N

= −KT lnλ1

Also consider the internal energy of the system

〈E〉 = Z−1
∑
σ∈Σ

E(σ) exp(−E(σ)/kT ) = kT 2 ∂ lnZ
∂T

If we compute λ1 explicitly, we get

λ1 = exp(K) cosh(h)
√

exp(2K) sinh2 h+ exp(−2K)

,
so plugging this in

f(H,T ) = −KT ln
(

exp(K) cosh(h)
√

exp(2K) sinh2 h+ exp(−2K)
)

We used that Tr(T ) = 2 exp(K) cosh(h) and detT = exp(2K) − exp(−2K) =
2 sinh(2K)

1.3. Magnetization. Lemma: M(H,T ) = −∂f(H,T )
∂H

.

Proof : M(H,T ) =
1
N
Z−1
N

∑
σ

(σ1 + · · · + σN ) · exp(− 1
kT

(E0(σ) −H
∑
i

σi)),

where E0 = −
∑
i

Jσiσi+1

On the other hand, we have Z =
∑
σ

exp(− 1
kT

(E0(σ)−H
∑

σi)). Differenti-

ating with respect to H we get

∂Z

∂H
=

Z

kT

∑
σ

(∑
i

σi

)
exp(

∑
i

σi/kT ) =
Z

kT

∑
i

〈σi〉 =
NZ

KT
M(H,T )

From fN =
FN
N

= −KT/N lnZ we get the result by differentiating with respect
to H.

Hence we may express

M(H,T ) =
exp(K) sinh(h)√

exp(2K) sinh2(h) + exp(−2K)

Hence there is no phase transition with respect to H, which is ”bad” in some
sense.
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1.4. Correlation functions. Recall the entries of the transfer matrix T :
Tσiσj = exp(Kσiσj + h

2 (σiσj)).
To understand the correlation we consider the following

〈σ1 · σ3〉 = Z−1
N

∑
σ

σ1Tσ1σ2Tσ2σ3σ3 . . . Tσnσ1 =

= Z−1
N Tr(ST 2STN−2)

where S =
(

1 0
0 −1

)
From here we easily deduce the general formulas:

〈σi〉 = Z−1
N Tr(STN )

〈σiσj〉 = Z−1
N Tr(ST j−iTN−j+i)

Define the eigenmatrix P =
(

cosφ − sinφ
sinφ cosφ

)
where 0 < φ < π/2 such that

cot 2φ = exp(2K) sinh(h)

A straightforward verification shows that P satisfies the following properties:

• It diagonalizes T , i.e. P−1TP =
(
λ1 0
0 λ2

)
, where λ1 > |λ2|;

• P−1SP =
(

cos 2φ − sin 2φ
− sin 2φ − cos 2φ

)
Using this eigenmatrix, we get

〈σiσj〉 = Z−1
N Tr

(
P−1SP

(
λj−i1 0

0 λj−i2

)
P−1SP

(
λN−j+i1 0

0 λN−j+i2

))
N→∞=

= cos2(2φ) +
(
λ2

λ1

)j−i
sin2(2φ)

Similarly, we get 〈σi〉 = 2 cos 2φ.
So we get the correlation functions

gij = 〈σiσj〉 − 〈σi〉〈σj〉 =
(
λ2

λ1

)j−i
sin2(2φ)

We use the notation
(
λ2

λ1

)j−i
= exp

(
−j − i

ξ

)
, where

ξ =
[
ln
(
λ1

λ2

)]−1

=

ln

exp(K) cosh(h) +
√

exp(2K) sinh2(h) + exp−2K

exp(K) cosh(h)−
√

exp(2K) sinh2(h) + exp−2K

−1

When H = 0⇒ h = 0, we get ξ = [ln(cothK)]−1 →∞, as T → 0.
So we get a criticality in the origin.
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2. Two-dimensional Ising model on a square lattice

This model will be a more satisfactory one since it has a criticality (1944 On-
sager), hence it is more realistic than the previous one. However, it has been solved
only for 0 magnetic field.

We gather our notations: N = # sites, Σ = {±1}N

ZN =
∑
σ∈Σ

exp(K
∑
i−j

σiσj + L
∑
|ij

σiσj)

is the partition function, where K = J/kT , L = J ′/kt with k the Boltzmann
constant, i− j are the horizontal bonds (edges) and |ij are the vertical ones.

We impose free boundary conditions (so there are no torus-like interactions at
the boundaries).

In the following, we represent the partition function in two ways, depending on
the temperature.

2.1. Low temperature representation of ZN .

Lattice L +• −• +•

+• +• −•

+• −• −•

+• −• +•

Given a lattice L, we define its dual lattice L∨, that is:
• vertices of L∨ correspond to faces of L.
• edges of L∨ correspond to pairs of adjacent faces of L.

Given σ ∈ Σ, we can isolate the + vertices of L from the − vertices of L,
forming so-called ”islands”. To give a configuration σ ∈ Σ is the same to give spins
of the faces of L∨. Dividing the islands, we get a polygon configuration P(σ)
on L∨.

Remarks:
1) P(σ) = −P(σ′)⇔ σ = ±σ′
2) E(σ) = E(−σ), because H = 0.
3) The horizontal edges in L that have opposite signs on their ends corre-

spond precisely to the vertical edges of the polygon configuration P.
4) As above, the vertical edges in L that have opposite signs on their ends

correspond to the horizontal edges in P.
Let r = |Pv| = # vertical edges in P, s = |Ph| = # horizontal edges in P, and
M = # horizontal edges in L = # vertical edges in L.
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Using remarks 3) - 4) we get

−E(P)
kT

= K
∑
i−j

σiσj+L
∑
|ij

σiσj = K(M−r)−Kr+L(M−s)−Ls = K(M−2r)+L(M−2s)

So the partition function is

ZN =
∑
σ

exp(K(M − 2r) +L(M − 2s)) = 2 exp(M(K +L))
∑
P

exp(−2Kr− 2Ls)

The last equality holds since polygonial configurations in the dual lattice cor-
respond to states up to signs (remark 1), which also accounts for the factor 2.

Denote by v∗ = exp(−2K) and w∗ = exp−2L (it will become clear in the next
section why we use these notations)

ZN = 2 exp(M(K + L))
∑
P
v∗|Pv|w∗|Ph|

2.2. High temperature representation of ZN . We define a similar for-
mula for the partition function for high temperature. We start with the simple
observation:

exp(Kσiσj) = coshK + sinhσiσj
Using this, and denoting v = tanhK, w = tanhL, we have

ZN =
∑
σ

∏
i−j

(coshK + sinhKσiσj)
∏
|ij

(coshL+ sinhLσiσj) =

= (coshK coshL)M
∑
σ

∏
i−j

(1 + vσiσj)
∏
|ij

(1 + wσiσj) =

= (coshK coshL)M
∑
σ

∑
P⊂edges of L

v|Ph|w|Pv|
∏

i−j∈P
σiσj

∏
|kl ∈P

σkσl =

== (coshK coshL)M
∑

P⊂edges of L

v|Ph|w|Pv|
∑
σ

∏
i−j∈P

σiσj
∏
|kl ∈P

σkσl

Now it’s not hard to see that∑
σ

∏
i−j∈P

σiσj
∏
|kl ∈P

σkσl = 0

except when every vertex has an even number of incoming edges which happens
precisely when P is a polygonial configuration on L. In this case, each term in the
sum is 1, hence the sum will be 2N . Hence we got

ZN = 2N (coshK coshL)M
∑

P polygonial config. onL

v|Ph|w|Pv|

Define K∗, L∗ by
• tanhK∗ = v∗ = exp(−2L)
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• tanhL∗ = w∗ = exp(−2K)
Substituting these into the formula for low temperature representation we get

a similar one to the high temperature representation.
It is an easy exercise to show that the preceding definitions are equivalent to
• sinh(2L) sinh(2K∗) = 1
• sinh(2L∗) sinh(2K) = 1

From this we deduce that the relation is involutive, i.e.

(K,L)→ (L∗,K∗)
exchanges horizontal with vertical (dual lattice), and exchanges high tempera-

ture representation with the low temperature representation.
Taking N,M →∞ (N/M → 1) we have

−ψ = lim
N→∞

1
N

lnZN (= f/kT, where f is the free energy per unit site)

For low temperature we get

−ψL = K + L+ ΦL∨(v∗, w∗)

where ΦL∨(v∗, w∗) = lim
N→∞

1
N

ln
∑
P(L∨)

v∗|Ph|w∗|Pv|, and we assume this limit

exists.
For high temperature we get

−ψL = ln(2 coshK coshL) + ΦL(v, w)
Now we apply these formulas to the dual lattice:

−ψL∨(K∗, L∗)
high temp.

= K∗+L∗+ΦL(v, w)
low temp.

= ln(2 coshK∗ coshL∗)+ΦL∨(v∗, w∗)

After eliminating ΦL∨(v∗, w∗), we get

−ψL(K,L) = K + L− ln(2 coshK∗ coshL∗)− ψL∨(K∗, L∗)
An easy calculation shows that ln(2 coshK∗ coshL∗) = 1

2 ln(sinh 2K∗ sinh 2L∗),
and using that at infinity L ≈ L∨, we arrive to

ψL(K∗, L∗) = ψL(K,L)− 1
2

ln(sinh 2K∗ sinh 2L∗)

2.3. Criticality. First consider the isotropic case, i.e. K = L
If there is K = KC a critical value, then ψL is not analytic in KC . From the

formula above we conclude that it is not analytic at K∗C either.
If this critical value is unique, then KC = K∗C , and computation shows that

the only value can be KC = 0.4406 . . . (Kramers-Wannier duality)
Peierls showed that there is at least one critical point KC . Onsager proved that

this is indeed unique, so the preceding discussion is valid.

In the anisotropic case, if there exists a unique critical curve, it is at criticality
sinh(2LC) sinh(2KC) = 1.





CHAPTER 6

Ising Model on the Honeycomb Lattice

1. Low and High Temperature Duality

The partition function for the hexagonal Ising lattice (the black part of Figure
1) will given by

ZHN (L) =
∑

σ∈{±1}N
exp(L1

∑
i
j

σiσj + L2

∑
i

j

σiσj + L3

∑
i
j

σiσj

Where the magnetic field H = 0, N denote the number of states and L denotes the
interaction coefficients Li = Ji/kgT where Ji’s are the coupling constants. Now,
we have a dual triangular lattice given by the red part of Figure 1. The partition
function for this lattice is

ZHN (L) =
∑

σ∈{±1}N
exp(K1

∑
i

j

σiσj +K2

∑
i

j

σiσj +K3

∑
ij

σiσj

• •

• • •

• • •

• •

• •

•

• •

•

•

••

L2 L1

L3

K2 K1

K3

Figure 1. The Ising Model on a Low Temperature Hexagonal
Lattice representation H overlaid with it’s dual High Temperature
Triangular Lattice C.

83



84 6. ISING MODEL ON THE HONEYCOMB LATTICE

In the previous section, we observed that for a spin configuration on vertices
of the square lattice

σ ∈ {±1}V (L)
Z2

←→ P(σ)

where P(σ) is a polygon configuration on the dual lattice L∨H and the Z2 factor
denotes that this correspondence is up to an overall sign. Since H = 0,

E(σ) = E(−σ) = E(P(σ)) = −M(L1 + L2 + L3) + 2L1r1 + 2L2r2 + 2L3r3

where ri is the number of edges in P(σ) ”perpendicular” to and edge in L of
type i and M is the number of edges in L∨ parallel to a given direction. Note that
M is only the same for each direction in the limit. Then

ZH2N (L) = 2 exp(M(L1 + L2 + L3))
∑

P⊂edges(L∨
exp ((−2L1r1 − 2L2r2 − 2L3r3)

is the Low Temperature Representation. At low temperature, Li = 1
T so the sum

of exponent above is small. Take 2N to be the number of vertices in LH so that
2N is the number of faces in L∨H. Then, in the limit

# of edges in L∨H ≈ 6N
2 = 3N

# of verticies in LH ≈ 6N
2 = 3N

so the partition function becomes

ZH2N (L) = 2 exp(N(L1 + L2 + L3))
∑

P⊂edges(L∨)

exp ((−2L1r1 − 2L2r2 − 2L3r3)

2. High Temperature Representation for L∨H = LC on the triangle lattice

Recall that for ε2 = 1

exp(εK) = cosh(K) + ε sinh(K)

= cosh(K)(1 + ε tanh(K))

=: cosh(K)(1 + εv)

where v = tanh(K). Then for K := (K1,K2,K3), the partition function for the
triangular lattice C becomes

ZCN (K) = [cosh(K1) cosh(K2) cosh(K3)]N×
V (C)∑

σ∈{±1}

∏
i

j

(1 + v1σiσj)
∏
i

j

1 + v2σiσj)
∏

ij

(1 + v3σiσj)

= [2 cosh(K1) cosh(K2) cosh(K3)]N
∑

P⊂edges(LC)

vr11 v
r2
2 v

r3
3

where ri is the number of edges in P//Ki and vi = tanh(Ki). Now we want to do
a matching: let vi = exp(−2Li). Then it can be shown that this imply that

cosh(Ki) = eLi(2 sinh(2Li))1/2
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which in turn implies that

sinh(2Li) sinh(2Ki) = 1(2.1)

We now have the following duality:

ZCN (K) =
1
2

(2 sinh(2L1) sinh(2L2) sinh(2L3))
N
2 ZH2N (L)

provided (2.1) holds.

3. The Star-Triangle Duality

Observe that the vertices of the honeycomb lattice can be partitions into two
distinct sets: V (LH) = A t B such that for any edge connecting i and j we have
i ∈ A and j ∈ B or j ∈ A and i ∈ B. Then

LH =
∑

σ∈{±1}AtB
exp

( ∑
j

i

L1σiσj +
∑
i

j

L2σiσj +
∑
i

j

L3σiσj

)(3.1)

=
∑

σ∈{±1}A

∑
σ∈{±1}B

∏
b∈B

expσb

( ∑
j

i

L1σiσj +
∑
i

j

L2σiσj +
∑
i

j

L3σiσj

)

=
∑

σ∈{±1}A

∏
b∈B

2 cosh
( ∑

j

i

L1σiσj +
∑
i

j

L2σiσj +
∑
i

j

L3σiσj

)

=
∑

σ∈{±1}A

∏
b

a a′

cosh
( ∑

j

i

L1σiσj +
∑
i

j

L2σiσj +
∑
i

j

L3σiσj

)

The idea here is that we want to write the above as a partition function on the
triangle lattice with vertices A and edges

a a′ in A if and only if there is a vertex b such that
b

a a′

Now we will start parsing Eq. (3.1). We start by writing

2 cosh(L1σa1 + L2σa2 + L3σa3) = R exp(K1σa2σa3 +K2σa1σa3 +K3σa1σa2)
(3.2)

The left hand side takes 8 values but by the evenness of cosh we can reduce
this to 4. The right hand side on the other hand only takes on 3 values so we must
add the R above. If R and K satisfy Eq. (3.2) then ZH2N (L) = RNZCN (K). This is
the so called Star-Triangle relation since we’ve replaced

a3

a1 a2b

with
a3

a1 a2
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• ••

• • ••

• ••

• ••

• • ••

• •

L2 L1

L3

a2 a1

a3

Figure 2. The Star-Triangle Duality.

Let solve Eq. (3.2). By evenness, assume that the number of -’s is less than
the number of +’s. Then

σ1 σ2 σ3

1 1 1 2 cosh(L1 + L2 + L3) = R exp(K1 +K2 +K3)
-1 1 1 2 cosh(−L1 + L2 + L3) = R exp(K1 −K2 −K3)
1 -1 1 2 cosh(L1 − L2 + L3) = R exp(−K1 +K2 −K3)
1 1 -1 2 cosh(L1 + L2 − L3) = R exp(−K1 −K2 +K3)

Set c = cosh(L1 + L2 + L3), ci = cosh(−Li + Lj + Lk) then the above give us
exp(4K1) = cc1/c2c3. Recall the basic hyperbolic trig identities:

cosh(a) cosh(b) =
cosh(a+ b) + cosh(a− b)

2

sinh(a) sinh(b) =
cosh(a+ b)− cosh(a− b)

2
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Then

exp(4K1)− 1 =
cc1 − c2c3
c2c3

=
cosh(L1 + L2 + L3) cosh(−L1 + L2 + L3)− cosh(L1 − L2 + L3) cosh(L1 + L2 − L3)

c2c3

=
cosh(2L2 + 2L3)− cosh(2L2 − 2L3)

2c2c3

=
sinh(2L2) sinh(2L3)

c2c3

=
e−2K1

(
e4K1 − 1

)
sinh(2L1)

2c2c3

=
(
c2c3
cc1

) 1
2 sinh(2L1) sinh(2L2) sinh(2L3)

2c2c3

=
sinh(2L1) sinh(2L2) sinh(2L3)

2(cc1c2c3)−1/2

=: K̄−1

Now by symmetry sinh(Ki) sinh(2Li) = K̄−1 for i =1, 2, 3. Multiplying all 4 initial
relations, we get

R4 = 16cc1c2c3
or

R2 = 4(cc1c2c3)1/2

= 2K sinh(L1) sinh(L2) sinh(L3)

=
2
K2

(sinh(2K1) sinh(2K2) sinh(2K3))−1

Essentially what we’re doing here is averaging over the b points in Figure 2. This
is the temperature preserving since if T >> 0, Li and Ki are both small so
sinh(2L2) ≈ sinh(2L3) ≈ 0 and c2 ≈ c3 ≈ 1. Then

e4K−1 =
sh(2L2) sinh(2L3)

c2c3
≈ 0

We will now use both dualities:

ZCN (K)
H-L Temp Dual

=
1
2

(2 sinh(2L1) sinh(2L2 sinh(2L3)−
N
2 ZH2N (L)

Star-Tri Dual=
1
2

(2 sinh(2L1) sinh(2L2 sinh(2L3)−
N
2 (R2)

N
2 ZCN (K∗)

=
1
2
K−

N
2 ZCN (K∗)

where sinh(2K∗i )(= (sinh 2Li)−1) = K̄ sinh(2K1) where the first equality is by the
High-Low Temp. Duality and the second is by the Star-Tri Duality.

Exercise. Show that the map K 7→ K∗ is an involution.

Now assuming that the free energy for L3 converges as N → ∞ and there
exists a unique critical hypersurface in K space then by the exercise we will obtain
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a critical point when Ki = K∗i . But this implies that K̄ = 1 and so Ki = KC
i =

0.27465. Similarly for the honeycomb model we have Li = LCi = 0.6584

4. Renormalization

Consider the 4N honeycomb lattice given by L1, L2 and L3 which is dual to
the 2N triangle lattice given by R, K1, K2 and K3 by

sinh(2Ki) sinh(2Li) = K̄−1

By taking the duality again we get that this is dual to the N honeycomb lattice
H′:

ZC2N =
∑

σ∈{±1}

∏
a1

a2a6

2 cosh(
6∑
i=1

Kiσai)

Then by requiring

2 cosh(
6∑
i=1

Kiσai) = exp(L∗•σiσj)

you should get a new lattice with parameters LRGi . It can be shown that at criti-
cality L = LRG.



CHAPTER 7

Ising Model on the Square Lattice

1. Commuting transfer matrices

Given a lattice as above we slice the lattice along the diagonal and turn it to
yield a ”stack” of one dim spin chains. Now, assume that H = 0, we have periodic
boundry conditions and that there are m rows, where m is even. Then the partition
function has the following form:

ZN = Σφ1...φn∈{±1}nVφ1φ2Wφ2φ3Vφ3φ4 . . . Vφm−1φmWφmφ1

where:

Vφφ′ = exp(Σni=1(Lσiσ′i +Kσi+1σ
′
i))

and

Wφφ′ = exp(Σni=1(Lσiσ′i+1 +Kσiσ
′
i))

The partition function then becomes:

ZN = tr(VWVW . . . V W ) = tr((VW )
m
2 ) λm/21

Where → λ1 is the largest eigen value.

L

K

L

K

L

K

L

K

L

K

L

K

L

K

L

K

L

K

L

K

L

K

L

K

L

K

L

K

L

K

L

K

1

1

2

2

3

3

4

4

. . . n

. . .
n

Figure 1. The Ising Model on a Square Lattice
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Our aim is to study products of the from: V (K,L)W (K ′, L′). This corresponds
to this part of the lattice:

φ′ ◦ ◦ ◦ ◦

φ′′ ◦

L′K′

◦ . . . ◦

φ ◦

K

◦

L

◦ ◦

So

(VW )φφ′ =Σφ′′Vφφ′′Wφ′′φ′

=Σσ′′1 ,...,σ′′nΠn
j=1exp[σ

′′
j (Lσj +Kσj+1 +K ′σ′j + L′σ′j+1)

=Πn
j=1Xj(σj , σj+1, σ

′
j , σ
′
j+1)

where

Xj(a, b, c, d) = Σf∈{±1}exp(f(La+Kb+K ′c+ L′d)

Graphically we have

a◦ ◦b

X ′ → ◦

LK

c◦

L′

◦d

K′

2. Commutation

We are looking for constants K ′, L′ such that the following matrices equation
is satified:

V (K,L)W (K ′, L′) = V (K ′, L′)W (K,L)(2.1)

Note first that Πn
j=1Xj(σj , σj + 1, σ′j , σj+1) is invariant if

X(a, b, c, d)→ exp(Mac)X(a, b, c, d)exp(−Mbd)

Then, if there exists M ∈ C such that

exp(Mac)X(a, b, c, d) = X ′(a, b, c, d)exp(Mbd)

where X ′ = X but with L and K exchanged with L′ and K ′ respectively.Then
condition (2.1) holds.

Schematically this is
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c◦ ◦d c◦ ◦d

?

(Σf ) f◦

L′K′

= (Σf ′) f◦

LK′

M M

a◦

L

◦b

K

a◦

L′

◦b

K

‖ ‖

c◦ ◦d c◦ ◦d

Σf,f ′ f ′◦ L3

L1

◦f

L′

= Σf ′,f f ′◦ L3

K

◦f

L2

a◦

L2

◦b

K

a◦

L′

◦b

L1

Where (M,K ′, L) 7→ (L3, L2, L1) and where the bottom two graphs are the
Star-Triangle Duality. The bottom equality holds for L2 = L′, L1 = K and implies
that

sinh(2L) sinh(2K) = sinh(2L′) sinh(2K ′)

3. Inversion

We want the product: V (K,L)W (K ′, L′) to be ”near diagonal” i.e we want

(SL1) X(a, b, c, d) = 0 if a 6= c and b = d

3.1. Corollary. If the (SL1) holds then

(VW ′)φφ′ =
∏
j

Xj(σj , σj+1, σ
′
j , σ
′
j+1) = 0

unless φ = ±φ′.

In addition, the (SL1) is equivalent to the following:

cosh(L−K ′ + (K + L′)) = 0(3.1)

cosh(L−K ′ − (K + L′)) = 0(3.2)

3.2. Exercise 1. (SL1)⇔ K ′ = L+ (π1/2)m1 and L′ = −K + (π1/2)m2

where m1,m2 ∈ Z of opposite parity

3.3. Exercise 2. Exercise 1 ⇒ sinh(2L) sinh(2K) = sinh(2L′) sinh(2K ′)

From now on we will restrict to the case m1 = 1;m2 = 0.



92 7. ISING MODEL ON THE SQUARE LATTICE

3.4. Exercise 3. Prove that both

X(a, b, c, d) = 2i ∗ sinh(2L)
and

X(a, b,−a,−b) = −2iab ∗ sinh(2K)

Now,

(VW )φ,φ′ = δφ,φ′(2i ∗ sinh(2L))n + δφ,−φ′(−2i ∗ sinh(2K))n

and

V (K,L)W (L+ (iπ/2);−K) = (2πi ∗ sinh(2L))nI + (−2i ∗ sinh(2K))nR

where Rφ,φ′ = δφ,−φ′ . Now, R2 = 1 so the right hand side of the above is easy to
invert. Therefore (VW ∗) is easy to invert and so V is easy to invert. In addition
we have the relations:

(1) (K ←→ L; φ←→ φ′)⇒V ←→W
(2) V (−K,−L) = RV (K,L) = V (K,L)R for some W
(3) Fix φ and φ′ and consider the following

◦ ◦

◦

◦
L

◦
K

Let r = the number of unlike pairs
•

◦
and let s = the number of unlike pairs

•

◦
Then r+s = the number of sign changes in sequence σ′1, σ2, σ

′
2, . . . , σ

′
1

and
Vφφ′ = exp[(m− 2r)K + (m− 2s)L]

Assume now that m = 2p is even. Then for r′ ∈ [0, p]

m− 2r = 2(p− r) , ±2r′

so
Vφφ′ = exp[±2r′K ± 2s′L]

for r′,s′ ∈ [0, p]
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and

Vφφ′(K ±
πi

2
, L± πi

2
) = Vφφ′(K,L)

3.5. Some more relations.

• Cφφ′ = δσ1σ′2
δσ2σ′3

. . . δσnσ′1 is called the ”Coxeter element”
• Translation invariance in the direction → XXXXXXXX implies that

V (K,L) =C−1V (K,L)C

W (K,L) =C−1W (K,L)C

Moreover we have the following properties: W (K,L) = V (K,L)C by
inspection.

• Since V (K,L)W (K ′, L′) = V (K ′, L′)W (K,L) we use the above to get
V (K,L)V (K ′, L′)C = V (K ′, L′)V (K,L)C and so

[V (K,L), V (K ′, L′)] = 0

Or, to summarize, V (K,L), V (K ′, L′), C,R all commute.
• Inversion identity.

V (K,L)V (L+
πi

2
,−K)C = (2ish(2L))nI + (−2ish(2K))nR

Consider joint eigenvector x of above matrices, ie

V (K,L)x =v(K,L)x
Cx =cx
Rx =rx

Cn = R2 =1 = cn = rn(3.3)

Then the inversion relation becomes:

v(K,L)v(L+
πi

2
,−K)c = (2i sinh(2L))n + (−2i sinh(2K))nr

We are interested in the eigenvalues of V • W = V 2C. Define Λ(K,L) ,
v(K,L)c1/2 so that evaluation of VW are the square of the Λ(K,L). The the
inversion formula takes the form

Λ(L,K)Λ(L+
πi

2
,−K) = (2ish(2L))n + (−2ish(2K))nr

Now, we need to parametrize all K and L such that

sinh(2K) sinh(2L) = k−1
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To do this, we will restrict to the case k = 1 (if you don’t the proof still goes
through but it requires elliptic, not hyperbolic, functions). One such parametriza-
tion is given by the following. Set

sinh(2K) = tan(u)

sinh(2L) = cot(u)

For u ∈ (0, π2 ). Note, this makes sense since we are assuming K,L ∈ R+ and for
u in the interval, tanu is a strictly increasing function covering R+. Complexifying
we get {

sinh(2K) = tanu
sinh(2L) = cotu

}
⊂ C3 3 {u,K,L}

The functional relations then become

Λ(u)Λ(u+ π/2) = (2icot(u))n + (2itan(u))nr

Where

K 7→ L+ 2π ⇒ sinh(K)→ − sinh(2L)

L 7→ −K ⇒ sinh(L)→ − sinh(2K)

Next, we can derive the following:

e2K = cosh(2K) + sinh(2K)

=
√

1 + sinh2(2K) + sinh(2K)

=
√

1 + tan2(u) + tan(u)

=
1√

cos2(u)
+

sin(u)
cos(u)

=
1 + sin(u)

cos(u)

We get a similar result for e−2K and e±2L:

e±2K =
1± sin(u)

cos(u)

e±2L =
1± cos(u)

sin(u)

Where as always u ∈ (0, π2 ).

Now, recall that

Vφ,φ′ = exp(±2r′K ± 2s′L) = (
1± sin(u)

cos(u)
)
r′

(
1± cos(u)

sin(u)
)
s′

where r′, s′ ∈ (1, 2, . . . , n2 ) and r′, s′ are even, and so

Vφ,φ′ =
t(u)

(sin(u) cos(u))p
(3.4)
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where t(u) is a polynomial in sin(u), cos(u) of total degree p. Now the eigen-
value equationV (K,L)x = v(K,L)x implies that v(K,L) is of the form given in
(3.4) and so Λ(K,L) are of the form given in (3.4).

We will now check the periodicity of Λ(u) and notice that under the u→ u+π
we have:

e±2K =
1± sin(u)
cos(u)

→ −1± sin(u)
cos(u)

= −e±2K

so K −→ −K ± iπ2 and similarly, L −→ L± iπ2 . Now,

V (−K ± iπ
2

;−L± iπ
2

) = V (−K,L) = V (K,L)R

so we must have

v(u+ π) =v(u)r

Λ(u+ π) =Λ(u)r(3.5)

and

Λ(u) =
e−2ipu(c0 + c1e

iu + · · ·+ c2ne
nipu)

(sin(u)cos(u))p
=

Now, (3.5) implies that if r = 1 then c2k+1 = 0 and if r = −1 then c2k = 0. We
now state the following claim:

3.6. Claim. For some p, uj ∈ C,

Λ(u) = P (sin(u)cos(u))−pΠl
j=0sin(u− uj)

where l = 2p if r = 1 and l = 2p− 1 if r = −1.
Proof. Let

p(u) = c0 + c1e
iu + · · ·+ c2ne

nipu = (c0 + c1ω2 + . . .+ c2nω2n)

for ω = eiu. For r = 1 above we have

q(ω) = a

n∏
j=0

(ω − ωj)(ω − ωj)

= a

n∏
j=0

(ω2 − ω2
j )

= a

n∏
j=0

(e2iu − e2iuj

= ã

n∏
j=0

eiu
(ei(u−uj) − e−i(u−uj))

2i
eiuj

for some uj .
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Thus we have

Λ(u)Λ(u+
π

2
) = (2i cot(u))n + (−2i tan(u))nr

We now plug the above into the claim. The left and side becomes

ρ2(sin(u) cos(u))−n
l∏

j=0

(−1)p sin(u− u− j) cos(u− uj)

and the right hand side becomes

(−1)p22p[
cos(u)n

sin(u)n
+

sin(u)n

cos(u)n
]

Canceling between both sides we get

ρ2
l∏

j=0

(−1)p sin(u− u− j) cos(u− uj) = 22p[cos(u)2n + sin(u)2np](3.6)

Now, set z = e2iu and zj = e2iuj so that

sin(u− uj) cos(u− uj) =
z−1(z2 − z2

j )z−1
j

4i
Then the Equation (3.6) becomes

z−lρ2

p∏
j=0

z2 − z2
j

zj
(iu)l =

zl−2p

22p
[(z + 1)4p − (z − 1)4p]

This determines z2
j and ρ2 exactly. So we get

z2
j = − tan2 θj/2

and

θj =

{
π(j−1/2)

2p r=1
j π2p r=-1

This then implies that φj = 1
2 ln(tan( θj2 )) and so that µj = ±π4 − iφj .

�

4. Ice Type Models

We will base our 2-dim Ice Type Model on a square lattice of the type pictured.

◦ ◦ ◦

◦ ◦ ◦

◦ ◦ ◦

• •

•

•

•
• •

•

•

• •
•
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The physical model that we have in mind for this mathematical models is the
structure of H2O ice. Each vertex is occupied by (fixed) oxygen atoms and each
edge is an ion of hydrogen (H+) which is closer to one of the two endpoints. The
”Ice rule” (by Slater) states that each for each of the four ions surrounding each
atom, two of them are closer that atom and two are closer to the respective neigh-
boring atoms. This is called the Electric Neutrality.

We have the following six configurations of H+ ions:

(1)◦

•

• •
•

(2)◦
•

• •

•

(3)◦
•
• •

•

(4)◦

•

••
•

(5)◦

•

• •

•

(6)◦
•

• •
•

The partition function for this model is

Z =
∑

orientation on edges

exp(
−ε
KβT

)

for ε = n1ε1 + · · ·+ n6ε6 where

ni = number of atoms in configuration i

εi = energy of configuration i

Another name for the above model is the Six Vertex Model.

4.1. Choices of Configurations. There are two main choices of configura-
tion we will consider:

1) The 2d Ice Model is given by the assumption ε1 = · · · = ε6 which implies
εi = 0. Then all states have the same 0 energy and Z is simply the number of
states.

2) The Ferroelectric Model. For T small enough all the dipoles point in the
same direction(Slater) and we have ε1 = ε2 = 0 and ε3 = . . . = ε6 > 0. In this case,
the ground state consists of either all of the configurations of type (2) or type (3)
above.
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.

.

.

}
ϕM

}
ϕ2}
ϕ1

.

.

.

1 2 3 . . . N

Figure 2. Row Model for Ice Type Models

3) The Antiferroelectric Model. Similar to the Ferroelectric Model, we
assume that ε1 = · · · = ε4 > 0 and that ε5 = ε6 = 0. In the ground states only (5)
and (6) occur. i.e there exists only two such states.

Assumption: ε1 = ε2; ε3 = ε4; ε5 = ε6;
Comment: ε is invariant if we reverse all the configurations in zero external

field.
Remark: Under periodic boundary conditions we can always assume ε5 = ε6

5. Transfer Matrix

In Figure (2) let ϕr be the state of row r ∈ {up, down}N . Then

V (ϕ,ϕ′) =
∑

exp(−(m1ε1 + . . .+m6ε6)/kβT

where mi is the number of atoms in state i and the sum is taken over configurations
of horizontal lines. In addition we have periodic boundry conditions:

Z =
∑

ϕ1...ϕM

V (ϕ1, ϕ2)V (ϕ2, ϕ3) . . . V (ϕM , ϕ1) = TrVM ∼ ΛMmax

Let α ∈ {±1} be the vector of spins associated to ϕ such that αi = +1 if the H+

ion is close to the top atom and αi = −1 if the ion is close the bottom atom. Then

Vαβ := V (ϕ,ϕ′) =
∑

µ1,...,µN

ω(µ1, α1|β1, µ2) . . . ω(µM , αM |βM , µ1)

where ω(µ, α|β, µ′) = exp(−εi/kβT ) is the Boltzman weight of

◦
β
µ′µ

αand

a :=ω(+ + |+ +) = ω(−− | − −)

b :=ω(+− | −+) = ω(−+ |+−)

c :=ω(+− |+−) = ω(−+ | −+)
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Let V = V (a, b, c). We are going to look for another transfer matrix V ′ =
V (a′, b′, c′) such that V and V ′ commute, ie such that V V ′ = V ′V . Now,

(V V ′)αβ = Σµ1...µNΣγ1...γNΣγω(µ1, α1|γ1, µ2)ω(µ2, α2|γ2, µ3) . . .
ω(µN−1, αN |γN , µ1)ω′(ν1, γ1|β1, γ2)ω′(ν2, γ2|β2, ν3)

. . . ω(νN , γN |βN , ν1)

= Σµ,ν∈ZN2
∏N
i=1 s(µi, νi|µi+1, νi+1|αi, βi)

where s(µ, ν|µ′, ν′|α, β) = Σγω(µα|γµ′)ω′(νγ|βν) corresponds to the diagram

β

ν • ν′

µ •

γ

µ′

α

Let s(α, β) be the matrix with entries s(µν|µ′ν′|αβ), (ie ∈End(C2⊗C2). Then

(V V ′)αβ = TrC2⊗C2 (s(α1, β1) . . . s(αN , βN ))

and similarly, if s′ = s with a′ 7→ a, b′ 7→ b, c′ 7→ c

(V V ′)αβ = TrC2⊗C2 (s′(α1, β1) . . . s′(αN , βN ))

5.1. Ansatz. If there exists M ∈ C2 ⊗C2 such that s(α, β) = Ms′(α, β)M−1

then secretly V V ′ = V ′V .

6. Star-Triangle Relation

Let M := ω′′(ν, µ|ν′, µ′′), then the Ansatz reads, in the form s(α, β)M =
Ms′(α, β): ∑

γ,µ′′,ν′′

ω(µ, α|γ, µ′′)ω′(ν, γ|β, ν′′)ω′′(ν′′, µ′′|ν′, µ′)

=
∑

γ,µ′′,ν′′

ω′′(ν, µ|ν′′, µ′′)ω(µ′′, α|γ, µ′)ω′(ν′′, γ|β, ν′)

For all µ, ν, µ′ν′, α, β. See Figure (3):
The unknowns in this equation are a′, b′, c′; a′′, b′′, c′′, 3− 1 + 3− 1 = 4. There

will be one equation for each of the α, β, µ, µ′, ν, ν′ so there would seem to be 26

equations. But the Ice Rule gives tell us that ω(µ, α|β, ν) = 0 unless µ+α = β+ ν
so the left hand side of the Star-Triangle relation is 0 unless

µ+ α+ ν = β + ν′ + µ′
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α

µ

ν

β

ν′

µ′
ω

ω′

ω′′

ν′′

µ′′

=

α

µ

ν

β

ν′′

µ′′
ω

ω′

ω′′

ν′′

µ′′

Figure 3. Star-Triangle Relation

or the following all hold.

µ+ α = γ + µ′′

γ + ν = β + ν′′

ν′′ + µ′′ = ν′ + µ′

⇒ µ+ α+ ν = β + ν′ + µ′

We can brutally enumerate the possibilities to get the following list:
µ α ν β ν′ µ′

1 1 1 1 1 1
1 1 -1 1 1 -1

1 -1 1
-1 1 1

1 -1 1

-1 1 1

-1 -1 1

-1 1 -1

1 -1 -1

-1 -1 -1 -1 -1 -1

So there are 20 = 1 + 9 + 9 + 1 possibilities. There is also symmetry under
flipping in any direction so that cuts the number of equations in half to 10. By
interchanging α ↔ β, µ ↔ ν′ and ν ↔ µ′ we see that 23/2 equations are trivially
satisfied:
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β ν′

ν ω′

ω′′

µ ω

α µ′

µ′ β

• µ

ω′′

• ν

ν′ α

The remaining six come in three pairs:

µ α ν µ′ β ν′

1 1 -1 1 -1 1
1 1 -1 -1 1 1
1 -1 1 -1 1 1

The actual equations are:

(1)

ac′a′′ ====== bc′b′′ + ca′c′′

ω′(−11| − 11)

∧

ω′′(11|11)

<

(2) ab′c′′ = ba′c′′ + cc′b′′

(3) cb′a′′ = ca′b′′ + bc′c′′
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Now, we can eliminate c′′, b′′, a′′ out of the above equations to get

a2 + b2 − c2

ab
=

(a′)2 + (b′)2 − (c′)2

a′b′

and so we see that V and V ′ commute if

2∆ =
a2 + b2 − c2

ab
=

(a′)2 + (b′)2 − (c′)2

a′b′
= 2∆′(6.1)

7. Parameterizing Solutions of Eq (6.1)

To parametrize solutions of a2+b2−c2
ab = 2∆ we will assume that ∆ and a are

constants. Then

1 + (b/a)2 + (c/a)2

b/a
= 2∆

Set x = b/c and y = c/a. Then we ca rewrite the above as 1 + x2 + y2 = 2x∆
so

y = (1 + x2 − 2x∆)1/2

so c = a(. . . )1/2. Now, we want to parameterize expansions of the form f(x) =
[(x− x1)(x− x2)]1/2 so we’ll substitute

t =
(
x− x1

x− x2

)2

⇒ t2 =
x− x1

x− x2

and therefore

x =
x1 − t2x2

1− t2
So we can write

F (x) = t(x− x2) =
t(x1 − x2)

1− t2
= F (t)

In our case, x1x2 = 1 and ∆ = 1
2 (x1 + x2) = x1+x−1

1
2 so we have the equations

a = a(7.1)

b = ax = a(x1−t2x−1
1 )

1−t2(7.2)

c = a
(x1−x−1

1 )t
1−t2(7.3)

By removing denominators we get

a = ρ′(1− t2)x1(7.4)
b = ρ′(x2

1 − t2)(7.5)
c = ρ′(x2

1 − 1)t(7.6)

And finally by making one last change of variables we get:

x1 = − exp(−λ)(7.7)
t = exp( 1

2 (v − λ))(7.8)

ρ′ = 1
2ρt
−1x−1

1(7.9)

These finally imply that
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a = ρ sinh(λ−v2 )(7.10)

b = ρ sinh(λ+v
2 )(7.11)

c = ρ sinh(λ)(7.12)

In summary we’ve made the following changes of variables: V = V (a, b, c) =
V (ρ′, t, x) = V (ρ, v, λ) , V (v). Now, V (v) is holomorphic/entire function of v and
V (v) and V (u) commute for any u, v ∈ C. This implies that simultaneus eigenval-
ues of these matrices will be holomorphic functions in v.

Now ∆′′ = ∆(a′′, b′′, c′′) = ∆ = ∆′ so we can can parametrize a′′, b′′, c′′ as
above for the same λ for some v′′ and ρ′′. Plug these into equations you get the
following constraints:

sinh
(
λ+ v − v′ + v′′

4

)
= 0

This implies that v′ = λ+ v+ v′′. Lets write u = λ+v
2 (and similarly for u′ and

u′′) then

a = ρ sinh(λ− u)(7.13)
b = ρ sinh(u)(7.14)
c = ρ sinh(λ)(7.15)

So v′ = λ+ v + v′ becomes u′ = u+ u′′ and we have the following relations

R(u)R(u′)R(u′′) = R(u′′)R(u′)R(u)

which becomes

R(u)R(u+ u′′)R(u′′) = R(u′′)R(u+ u′′)R(u)(7.16)

These are the Yang Baxter Equations written as braid relations on R.

8. Yang-Baxter on R Implies Commutativity of V

Now, recall that

V =
∑

µ1,...,µN

ω(µ1, α1|β1, µ2) . . . ω(µN , αN |βN , µ1)

where V ∈End((C2)⊗N ), V = TrC2
0
(R01 . . . R0N ) where R0i ∈End(C2

0 ⊗ C2
i ) and

have matrix entries
Rµβµα = ω(µα|µ′β)

Then the partition function over M rows is given by

ZM = TrC2⊗...⊗C2(VM )

We want to show that the Yang-Baxter Equation for R implies the commutativity
of V . We will write (7.16) in a more standard form:

R12(λ)R13(µ)R23(ν) = R23(ν)R13(µ)R12(λ)(8.1)
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Claim. If (8.1) holds then the RTT-Relasions

R00̄(λ)T0(µ)T0̄(ν) = T0̄(ν)T0(µ)R00̄(λ)

also hold, where
• The identity occurs in End(C2

0 ⊗ C2
0̄ ⊗ (C2)⊗N )

• T0 stands for R01R02 . . . R0N is the monodromy matrix.
• T0̄ similarly stands for R0̄1R0̄2 . . . R0̄N

8.1. Corollary. The RTT-Relasion implies the commutation relation V (µ)V (ν) =
V (ν)V (µ).

Proof. First, we’ll rewrite the RTT as

R00̄(λ)T0(µ)T0̄(ν)R−1
00̄

(λ) = T0̄(ν)T0(µ)

so that both sides act on the tensor product of two spaces. Then taking the trace
we see that the R00̄(λ) and the R−1

00̄
(λ) terms cancel and we get

V (µ)V (ν) = V (ν)V (µ)

�

Proof. (of Claim) We will write out the left hand side of (8.1) and use the
fact that R0i(µ) and R0̄i(ν) commute to move each element R0i(µ) next to its pair
R0̄i(ν). We then use the Yang-Baxter Equation to commute R0̄0(λ) past the pair
and finally use the commutation to reorder the equation into the proper ordering.
The LHS is:

R00̄(λ)R01(µ) . . . R0N (µ)R0̄1(ν) . . . R0N̄ (ν)

= R00̄(λ)R01(µ)R0̄1(ν) . . . R0N (µ)R0̄2(ν) . . . R0̄N (ν)

= R0̄1(ν)R01(µ)R0̄0(λ) . . . R0N (µ)R0̄2(ν) . . . R0̄N (ν)

= . . . = R0̄1(ν)R01(µ)R0̄2(ν)R02(µ) . . . R0̄N (ν)R0N (µ)R0̄0(λ)

= R0̄1(ν)R0̄2(ν) . . . R0̄N (ν)R01(µ)R02(µ) . . . R0N (µ)R0̄0(λ)

�

Recall from the square Ising Model that we could find eigenvalues with func-
tional relations between the eigenvalues the commuting transfer matrices. We now
need functional relations of the eigenvalues of V (u). Instead of postulating func-
tional relations between eigenvalues of V (u) we will postulate functional relations
of V and see how it descends to the eigenvalues:

8.2. Baxter Ansatz. There exists commuting matrices Q(v) depending holo-
morphically on v such that

(1) Q(v) is invertible for at least one v0 ∈ C.
(2) V (u)Q(v) = Q(v)V (u) for all v and u.
(3) Q(v) commutes with the spin operator

S =
(

1 0
0 −1

)
⊗ . . .⊗

(
1 0
0 −1

)
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(4) The entries of Q(v) are of the form∑
−µ<r<µ

t′ exp(rV/2)

(5) Setting φ(v) = ρN sinhN (V/2), where ρ is the parameter from before, and
λ′ = λ− iπ, we have

V (v)Q(v) = φ(λ− v)Q(u+ 2λ′) + φ(λ+ v)Q(v − 2λ′)

Recall that

∆ = − cosh(x) =
a2 + b2 − c2

2ab
=
x1 + x−1

1

2

for x1 = e−λ and λ fixed. So then V Q is a linear combination of two
shifted versions of Q. This then is a second order differential equation
in Q and comes from the observation that in the model the eigenvalues
actually do satisfy these requirements.

Now, to go from (5) to the eigenvalues of V we diagonalize V (v) and Q(v)
simultaneously, ie see if there exists P ∈GL((C2)⊗N ) such that P−1V (v))P and
P−1Q(u)P are diagonal. Now we can check that

V (v)T =V (−v)

Q(u)T =Q(−v)

so these are unitary automorphisms and so are simultaneously diagonalizable.

Let Λ(v) be an eigenvalue of V (v) and q(v) is the corresponding eigenvalue of
Q(v). Now,

Λ(v)q(v) = φ(λ− v)q(v + 2λ′) + φ(λ+ v)q(v − 2λ′)

by the Ansatz (called Baxters TQ Relation). The assumptions on the entries of
Q(v) give us

q(v) = c

n∏
`=1

sinh
(
v − v`

2

)
For some n ≤ N and some v1, . . . , v`. Now,

Λ(v) =
φ(λ− v)q(v + 2λ′) + φ(λ+ v)q(v − 2λ′)

q(v)

and since Λ(v) is entire the numerator must vanish on any v1, . . . , vN . This gives
us the relation that for j = 1, . . . , N

φ(λ− vj)
φ(λ+ vj)

=
q(vj − 2λ′)
q(vj + 2λ′)

(8.2)

We will call this equation the Ansatz Equation.
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µ = + µ′ = +

α

β

•
•

•

•b :
µ = + µ′ = −

α

β

•
•
•0 :

Figure 4. Diagrams associated to the weight in the matrices Gi(+)

9. The Construction of Baxters Q-Matrix

Let g be a column of Q. We will assume that g is a pure tensor:

g = g1 ⊗ g2 ⊗ . . .⊗ gN
where gi ∈ C2. Then

V g(v) = TrC2
0
(R01g1, . . . , R0Ngn)

where R0igi ∈End(C2
0)⊗C2. Note that the factor of C2 corresponds to one complex

dimension of spin up, on of spin down. Define Gi := R0igi and let α = ±1 so that
Gi(α) ∈End(C2

0). Then

Gi(α)µµ′ =
∑
β

ω(µα|βµ′)gi(β)

so
µ′=+ µ′=−

Gi(+) = µ=+

µ=−

(
agi(+) 0
cgi(−) bgi(+)

)
and

µ′=+ µ′=−

Gi(−) = µ=+

µ=−

(
bgi(−) cgi(+)

0 agi(+)

)
where, we have drawn the diagrams corresponding to the weights a and to the 0 in
Figure 4. Note that the 0’s occurs because the configuration isn’t allowable.

Now,

[V g]α = TrC2
0
(G1(α1) . . . GN (αn))(9.1)

Ansatz. Assume now that we can, by a suitable change of basis, make all
the Gi upper or lower triangular. Ie there exists Pi for i = 1, . . . , N such that
Gi(αi) = PiHi(α)P−1

i+1 where the Hi(α) are upper triangular. If so, then

[V g]α = TrC2
0
(H1(α1) . . . HN (αn)) = g′1(α1) . . . g′N (αN ) + g′′1 (α1) . . . g′′N (αN )

Now, to solve Equation (9.1). By the Ansatz

Gi(αi)Pi+1 = Pi

(
g′i(αi) ∗

0 g′i(αi)

)
where Pi+1 = [pi+1|qi+1]. Then

GiPi = g′i(αi)
(
p1
i

p2
i

)
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and we can write Gi(αi)Pi+1 = g′i(αi)Pi, where α = ±1. In coordinates this reads∑
β,µ′

ω(µα|βµ′)gi(β)Pi+1(µ′) = g′i(α)Pi(µ)

for all α, µ ∈ {±1}. There are 22 = 4 possibilities and we will simply list them:

µ α
+ + agi(+)Pi+1(+) = g′i(+)Pi(+)
+ - bgi(−)Pi+1(+) + cgi(+)Pi+1(−) = g′i(−)Pi(+)
- + cgi(−)Pi+1(+) + bgi(+)Pi+1(−) = g′i(+)Pi(−)
- - agi(−)Pi+1(−) = g′i(−)Pi(−)

The unknowns in the above equations are the (gi)’s, (g′i)’s, and the pi’s. Now, we
can use the equations corresponding to (++) and (−−) to eliminate g′i(±). The
second and third equations then become

bgi(−)Pi+1(+)Pi(−) + cgi(+)Pi+1(−)Pi(−) =agi(−)Pi+1(−)Pi(+)

cgi(−)Pi+1(+)Pi(+) + bgi(+)Pi+1(−)Pi(+) =agi(+)Pi+1(+)Pi(−)

Set ri = Pi(−)/Pi(+), then we have

bgi(−)ri + cgi(+)ri+1ri =agi(−)ri+1

cgi(−) + bgi(+)ri+1 =agi(+)ri

We can now eliminate gi(−):

gi(−) =
ari − bri+1

c
· gi(+)

=
criri+1

ari+1 − bri
· gi(+)

This implies that

(ari − bri+1)(ari+1 − bri) = c2riri+1

Dividing both sides by riri+1 we have

e−λ + eλ = 2∆ =
a2 + b2 − c2

ab
=

ri
ri+1

+
ri+1

ri

so

ri+1 = −rieσiλ

for σi ∈ {±1} and so finally

ri = (−1)ir exp((σ1 + . . .+ σi−1)λ)

where r is arbitrary and
∑
σi = 0 so as to have periodicity, note that this implies

that N is even.

Now, fix Pi(+) := 1 so that Pi(−) = ri = (−1)i exp[λσ1, . . . , σi−1]. We also
have the freedom now to define gi(+) := 1 which in turn implies that gi(−) =
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ri exp((λ+ ν)σi/2). Recall as well that

a =ρ sinh
λ− ν

2

b =ρ sinh
λ+ ν

2
c =ρ sinhλ

g′i(+) =a

g′i(−) =− ari exp
3λ+ ν

2
σi

We can compute g′′i (+) by taking the determinant of GiPi+1 = . . . from before and
setting det(Pi+1) = 1. The result is

g′′i (+) = b

g′′i (−) = −bri exp
λ− ν

2
σi

So

gi =
(

1
ri exp(λν2 σi

)
=: hi(ν)

and

g′i = a

(
1

−ri exp( 3λ+ν
2 σi

)
= a

We claim that g′i is the as before but shifted so

g′i = ahi(ν1 + 2λ′)

Similarly,

g′′i = h

(
1

ri exp(λν2 σi)

)
= hhi(ν − 2λ′)

So
[V g]α = g′1(α) . . . g′N (α) + g′′1 (α) . . . g′′N (α)

and so for y(v) = h1(v)⊗ hN (v) ∈ (C2)⊗N

V(v)y(v) = any(v + 2λ′) + bNy(v − 2λ′) = φ(λ− v) + φ(λ+ v)(9.2)

So this is a vector solution to the Baxters TQ relation.

Now, recall that a = ρ sinh((λ − v)/2, b = ρ sinh((λ + v)/2 and c = ρ sinhλ.
Thus, v → −v exchanges the elements a and b. Now, V (b, a) = V (a, b)T , in fact
recall that V has entries

Vαβ =
∑

µ1...µN

ω(µ1α1|β1µ2) . . . ω(µNαN |βNµ1)

so
V Tαβ =

∑
µ1...µN

ω(µ1β1|α1µ2) . . . ω(µNβN |αNµ1)
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9.1. Remark. The basic fact that we’re using here is that ω(µβ|αµ′) = ω(−µα|β−
µ′) where the negation is required to preserve

ω(+− |+−) = ω(−+ | −+) = c

ω(+ + | − −) = ω(−− |+ +) = 0

but then negating µ and µ′ takes a = ω(+ + | − −) to ω(− + | + −) = b as
required. Thus, indeed V (b, a) = V (a, b)T and so V (−v) = V (v)T .

Let QR be a 2N by 2N matrix whose whose columns are linear combinations of
the vector y(v) above and let QL(v) = QR(−v)T . Then it follows from (9.2) that

V (v)QR(v) = φ(λ− v)QR(v + 2λ′) + φ(λ.+)QR(v − 2λ′)(9.3)

By switching the sign of u, v this gives us.

V (−v)QR(−v) = φ(λ+ v)QR(−v + 2λ′) + φ(λ− v)QR(−v − 2λ′)
⇓

QL(v)V (v) = φ(λ.v)QL(v + 2λ′) + φ(λ.c)QL(v − 2λ′)

Next, we want to claim that for any u, v we have

QL(u)QR(v) = QL(v)QR(u)

We will call a typical column of Qr(u) y(u|r, σ) where σ = (σ1, . . . , σN ), σi ∈ {±1}
subject to the condition that σ1 + . . .+ σN = 0. We then need to show that

y(−u|r′, σ′)T y(v|r, σ) = y(−v|r′, σ′)T y(u|r, σ)

Now, the left hand side is

m∏
i=1

(1 + rir
′
i exp[

1
2

(λ− u)σ′i +
1
2

(λ+ v)σi]

=
m∏
i=1

(1 + rir
′
i exp[λ(σ1 + . . .+ σi−1 + σ′1 + . . . σ′i−1) +

1
2

(λ− u)σ′i +
1
2

(λ+ v)σi]

so following Baxter we will call the above J(u, v|σ1, . . . , σN ) and look at

J(u, v| . . . , σj+1, σj , . . .)/J(u, v| . . . , σj , σj+1, . . .)

=
1 + rir

′
i exp[λ(σ1 + . . .+ σj−1 + σ′1 + . . . σ′j−1) + 1

2 (λ− u)σ′j + 1
2 (λ+ v)σj ]

1 + rir′i exp[λ(σ1 + . . .+ σj−1 + σ′1 + . . . σ′j−1) + 1
2 (λ− u)σ′j + 1

2 (λ+ v)σj+1]

×
1 + rir

′
i exp[λ(σ1 + . . .+ σj + σ′1 + . . . σ′j) + 1

2 (λ− u)σ′j+1 + 1
2 (λ+ v)σj+1]

1 + rir′i exp[λ(σ1 + . . .+ σj + σ′1 + . . . σ′j) + 1
2 (λ− u)σ′j+1 + 1

2 (λ+ v)σj ]

We want to show that this is symmetric in u and v. First, note that we can assume
σj+1 = −σj since otherwise the result is obvious. Then there are only 23 = 8 cases
to check which are left as an exercise. Thus QL(u)QR(v) = QL(v)QR(u) for any u,
v.
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9.2. Q(u)Q(v) = Q(v)Q(u). To show that Q(u) and Q(v) commute for any u
and v we will use the above and the fact that QR(v0) is invertible for some (and
hence a generator) v0. Set

Q(v) := QR(u)Q−1
R (v0) = Q−1

L (v0)QL(v)

Now recall that from Equation (9.3) we have

V (v)QR(v) = φ(λ− v)QR(v + 2λ′) + φ(λ+ v)QR(v2λ′)

Multiplying on the right by Q−1
R (v0) we have

V (v)Q(v) = φ(λ− v)Q(v + 2λ′) + φ(λ+ v)Q(v2λ′)

but we also have, by transposing Equation (9.3) and letting v 7→ −v we get

QL(v)V (v) = φ(λ− v)QL(v + 2λ′) + φ(λ+ v)QL(v2λ′)

so
V (v)Q(v) = Q(v)V (v) = φ(λ− v)Q(v + 2λ′) + φ(λ+ v)Q(v2λ′)

And so V and Q commute. Finally,

Q(u)Q(v) =QL(v0)−1QL(u)QR(v)QR(v0)−1

=QL(v0)−1QL(v)QR(u)QR(v0)−1

=Q(v)Q(u)

Thus Q(u) and Q(v) commute and V (v) and Q(v) commute.

10. Spin Operators

We just have to check now that Q commutes with the spin operators. Let

S =
(

1 0
0 −1

)⊗N
Then we can check that

Sy(v) = y(v + 2πi)
which implies that SQR(v) = Qr(v + 2πi) so

QL(v)S = QTR(−v)S = QTr (−v + 2πi) = QTr (−v − 2πi) = QL(v + 2πi)

Where the 4’th equality is by the 4πi periodicity. Thus

SQ(v) = Q(v + 2πi) = Q(v)S

Also, SV (v) = V (v)S since

(SV (v)S−1)αβ =
∑

µ1...µN

α1ω(µ1α1|β1µ2)β1α2 . . . αNω(µNαN |βNµ1)

=
∑

µ1...µN

µ1ω(µ1α1|β1µ2)µ2µ2 . . . µNω(µNαN |βNµ1)µ1

=
∑

µ1...µN

ω(µ1α1|β1µ2) . . . ω(µNαN |βNµ1)

=(V (v))αβ

since that fact that µiαiβiµi+1 = 1 means that µiµi+1 = αiβi and so we can make
the change in the third line.
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11. Consequences of Baxters Ansatz

It follows from the construction of Q that

SQ(v) = Q(v)S = Q(v + 2πi)

so S2Q(v) = Q(v) by the 4πi periodicity of Q(v), so Q is a function of ev/2.
Moreover, if Q± are the diagonal blocks of Q corresponding to the ±1 eigenvalues
of S then

Q±(v + 2πi) = ±Q±(v)

So Q+ is actually a function of ev and Q− is a a function of ev/2 not involving even
powers. From the construction of Q is also follows that Q grows at most as fast as
exp(Nv/2). So Property 6 can be replaced by these conditions.

Further consiquences:

q(v) =
∑
|r|<N

dr exp((r)v/2) = e−
Nv
2

∑
|r|<N

dr exp((r +N)v/2)

will be a typical entry of Q(v). We can factor it as

c · e−Nv2 (e
v
2 − z1) . . . (e

v
2 − zn)

so that

q(v) =
∑

|r|<N−1

drx
r

is a Laurent Polynomial in x = e
v
2 which is either even (when r’s have even powers)

or odd (when r’s have even powers). We can factor it as above to get

q(v) = e−(N−1)
∑

|r|<N−1

drx
r+N−1 = e−(N−1)(x−x1) . . . (x−xn′) = cx−n(x−x1) . . . (x−x2n)

for some n ≤ 2(N − 1) and some constant c. Thus,

q(v) =cx−n(x− x1)(x+ x1) . . . (x− xn)(x+ xn)

=c
n∏
i=1

x2 − x2
i

x

=c
n∏
i=1

(xi)
n∏
i=1

x

xi
− xi
x

=c
n∏
i=1

(xi)2n
n∏
i=1

sinh
(
v − vi

2

)
where x = exp

(
v
2

)
and xi =: exp

(
vi
2

)
so indeed q is proportional to

n∏
i=1

sinh
(
v − vi

2

)
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Figure 5. The six dot configurations at a vertex and the corre-
sponding arrow and line configurations.

for some vi ∈ C defined up to 4πi. Thus if Λ(v) and q(v) are a pair of joint
eigenvalues of T (v) and Q(v) respectively then to summarize

q(v) =
n∏
i=1

sinh
(
v − vi

2

)
(11.1)

Λ(v) =
φ(λ− v)q(v + 2λ′) + φ(λ+ v)q(v − 2λ′)

q(v)
(11.2)

12. The Six Vertex Model Continued

13. Line Configurations

We will now replace the dot configurations above with arrow on line configu-
rations as shown in Figure (1). Then the lines move upward or to the right (if one
starts moving up along a line) and never move down or to the left. Now, a line
might be able to not move upwards if a row is purely of type (4) but due to the
periodic boundary conditions if a line has started moving up it will continue to do
so. Moreover, because of the vertical boundary it will continue moving upward.

In conclusion, each non-horizontal line meats every row of vertical edges one
because it has to continue moving up and only one because it cannot go down. In
addition the number of lines in a given row of vertical edges is constant in any state.

13.1. Corollary. Vϕϕ′ = 0 unless the number of down arrows of ϕ is the same
as the number of down arrows of ϕ′.

Call the number of down arrows n. Our aim now is to find eigenvectors of
V among the states with ”quantum number” n. We will specify such states by
1 ≤ x1 < . . . < xn ≤ N where xi is the position of the i’th down arrow and let
X = {x1, . . . , xn}. Then

g(X) =↑ ⊗ . . .⊗ ↑ ⊗ ↓ ⊗ ↑ ⊗ . . . ∈ (C2)⊗N

xi

Note, n corresponds to the weight of g(X) under the 2 action on (C2)⊗N so the
horizontal line configuration corresponds to the the fact that R is of 0 weight. Now,
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•
x

•
y

(a)

•
x

•
y

(b)

•
x = y

•
x = y

(c)

Figure 6. Diagrams of line configurations in the case n = 1

the eigenvalues V g = Λg, where g = {g(X)} are of the form

Λg(X) =
∑
Y

V (X,Y )g(X)

where

V (X,Y ) =
∑

am1+m2bm3+m4cm5+m6

where X is a configuration of lines on one row of vertical edges, Y is the configura-
tion of the row above and the sum is taken over all allowed configurations of lines
on the intervening horizontal edges.

For example, note that the horizontal lines are the intervening configurations
of X = Y = ∅ so

V (∅, ∅) = aN + bN = Λ

13.2. Case n = 1. If we have one and only one down arrow then g(X) =: g(x)
where X = {x} and we want to solve Λg(x) =

∑
y V (x, y)g(y).

• x < y We only have one possible configuration, shown in Figure (2.a).
This gives us

V (x, y) = cby−x−1caN−(y−x+1)

where the number of vertices between x and y is denoted y − x+ 1.
• x > y Again, we only have one possible configuration, shown in Figure

(2.b). This gives us

V (x, y) = cbN+y−x−1cax−y−1)

where the number of vertices between x and y is denoted N − (x− y+ 1).
• x = y We have two possibilities here, shown in Figure (2.c). This gives us

V (x, y) = bN−1a+ aN−1b

Counting for all the various cases, the eigenvalue equation is

g(x) = aN−1bg(x) +
N∑

y=x+1

c2bN+y−x−1ax−y−1)g(y) + abN−1g(x) +
x−1∑
y=1

c2by−x−1aN−(y−x+1)g(y)

(13.1)
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Bethe Ansatz. Assume that g(x) = zx for some z as of yet undetermined.
Then

N∑
y=x+1

c2bN+y−x−1ax−y−1)zy =c2aN−2zx+1)
N∑

y=x+1

(
bx

a

)y−x−1

=c2aN−2zx+1) 1−
(
bx
a

)N−x
1− bx

a

=
c2aN−2zx+1)

a2 − abz
− ax−1bN−xc2zN+1

a− bz
Similarly,

sumx−1
y=1c

2by−x−1aN−(y−x+1)zy =− c2abN−1zx)

a2 − abz
+
ax−1bN−xc2z

a− bz
so adding these we get for the right hand side of (1.1):

aN−1bzx +
c2aN−2zx+1)

a2 − abz
− ax−1bN−xc2z

a− bz
(zN − 1) + abN−1zx − c2abN−1zx)

a2 − abz

=aN
(
ab+ (c2 − b2)z

a2 − abz

)
zx − ax−1bN−xc2z

a− bz
(zN − 1) + bN

(
a2 − c2 − abz
ba− b2z

)
zx

we can eliminate the unwanted term (the coefficient of (zN − 1) by simply setting
zN = 1. Then

Λ = aN
(
ab+ (c2 − b2)z

a2 − abz

)
zx + bN

(
a2 − c2 − abz
ba− b2z

)
zx

All the eigenvalues corresponding to the roots of zN = 1. We would need to do
some additional work in the general case.

13.3. Proposition. The preferred eigenvector of V for n = 1 is the vector
g(x) = 1 for all x = 1, . . . , N and have a corresponding preferred eigenvalues

Λ = aN
(
ab+ (c2 − b2)

a2 − ab

)
zx + bN

(
a2 − c2 − ab
ba− b2

)

13.4. Case n = 2. Now, g(X) = g(x1, x2) for 1 ≤ x1 < x2 ≤ N and
V (X,Y ) = 0 unless either x1 ≤ y1 ≤ x2 ≤ y2 or y1 ≤ x1 ≤ y2 ≤ x2.

The contribution for the first type is

ax1−1E(x1, y1)D(y1, x2)E(x2, y2)eN−y2

where

E(x, y) =

{
cby−x−1 if x < y
b/c if y = x

and

D(y, x) =

{
cax−y−1 if y < x
a/c if y = x

Now, consider the following case:



13. LINE CONFIGURATIONS 115

• x1 < y1: In this case we have one vertex of type (5) for x1 and y1−x1−1
vertices of type (4); for y1 we could have a vertex of type (2) or (6). Then
E(x1, y1) = cby1−x1−1.

• x = y: In this case we have one vertex of type (1) so we have E(x1, y1) =
b/c.

• y1 < x2: Here, if x1 = x2 we’ve already counted y1. If on the other hand if
x1 < y1 then we add these contributions x1 < y1: D(y1, x1) = cax2−y1−1.

• y1 = x2: In this case we have the partition x1 < y1 = x2 < y2 which
corresponds to a vertex of type (2). Then D(x, y) = a/c

• x2 < y2:Similar to the above, we have E(x2, y2) = cby2−x2−1

• x2 = y2:Similar to previous two, E(x2, y2) = b/c.
Thus the eigenvalue equation is

Λg(x1, x2) =
∑

x1≤y1≤x2

∗∑
x2≤y2≤N

ax1−1E(x1, y1)D(y1, x2)E(x2, y2)caN−y2g(y1, y2)

+
∑

1≤y1≤x1

∗∑
x1≤y2≤x2

by1−1E(y1, x1)D(x1, y2)E(y2, x2)cbN−x2g(y1, y2)

where the star indicates that we’re adding the condition that y1 < y2.

13.5. Ansatz for the Eigenvector. We will assume g takes the form g(x1, x2) =
A12z

x1
1 zx2

2 A12 where A12 is constant.

Use the ansatz, the first double sum becomes

∑
x1≤y1≤x2

∗∑
x2≤y2≤N

ax1−1E(x1, y1)D(y1, x2)E(x2, y2)caN−y2zy11 zy22

=
∑

x1≤y1≤x2

ax1−1E(x1, y1)D(y1, x2)czy11

∑
x2≤y2≤N

E(x2, y2)aN−y2zy22

The second summand here can be rewritten as follows:

=
b

c
aN−x2zxz2 +

N∑
y2=x2+1

cby2−x2−1aN−y2zy22

=
b

c
aN−x2zxz2 + caN−x2−1zx2+1

2

N∑
y2=x2+1

(
bz2

a

)y2−x2−1

=
b

c
aN−x2zxz2 + caN−x2−1zx2+1

2

1−
(
bz2
a

)N−x2

1− bz2
a

The first sum then is the sum of the y1 = x1 part, the y1 = x2 part and
standard part.

ax1−1bax2−x1−1czx1
1 + ax1−1cbx2−x1−1zx2

2

+
x2−1∑

y1=x1+1

(
bz

a

)y1−x1−1

= ax2−3c3
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By Baxter, the result will eventually be

A12{ax1(L1a
x2−x1zx1

1 +M1b
x2−x1zx2

1 )

×(L2a
N−x2zx2

2 + P2b
N−x2zN2 )

−aN+x1−x2−1bx2−x1(z1z2)x2}
Where

Li = L(zi) :=
ab+ (c2 − b2)zi

a2 − abzi

Mi = M(zi) :=
ab+ c2 − abzi
a2 − abzi

Pi = P (zi) :=
c2zi

a2 − abzi
Similarly, the second sum is

A12{(ax1P1 +M1b
x1zx1

1 )×(L2a
x2−x1zx1

2 +M2b
x2−x1zx2

2 )bN−x2

−ax2−x1bN+x1−x2(z1z2)x1}



CHAPTER 8

The Six Vertex Model Continued

1. Line Configurations

We will now replace the dot configurations above with arrow on line configu-
rations as shown in Figure (1). Then the lines move upward or to the right (if one
starts moving up along a line) and never move down or to the left. Now, a line
might be able to not move upwards if a row is purely of type (4) but due to the
periodic boundary conditions if a line has started moving up it will continue to do
so. Moreover, because of the vertical boundary it will continue moving upward.

In conclusion, each non-horizontal line meats every row of vertical edges one
because it has to continue moving up and only one because it cannot go down. In
addition the number of lines in a given row of vertical edges is constant in any state.

1.1. Corollary. Vϕϕ′ = 0 unless the number of down arrows of ϕ is the same
as the number of down arrows of ϕ′.

Call the number of down arrows n. Our aim now is to find eigenvectors of
V among the states with ”quantum number” n. We will specify such states by
1 ≤ x1 < . . . < xn ≤ N where xi is the position of the i’th down arrow and let
X = {x1, . . . , xn}. Then

g(X) =↑ ⊗ . . .⊗ ↑ ⊗ ↓ ⊗ ↑ ⊗ . . . ∈ (C2)⊗N

xi

Note, n corresponds to the weight of g(X) under the 2 action on (C2)⊗N so the
horizontal line configuration corresponds to the the fact that R is of 0 weight. Now,
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Figure 1. The six dot configurations at a vertex and the corre-
sponding arrow and line configurations.
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•
x

•
y

(a)

•
x

•
y

(b)

•
x = y

•
x = y

(c)

Figure 2. Diagrams of line configurations in the case n = 1

the eigenvalues V g = Λg, where g = {g(X)} are of the form

Λg(X) =
∑
Y

V (X,Y )g(X)

where

V (X,Y ) =
∑

am1+m2bm3+m4cm5+m6

where X is a configuration of lines on one row of vertical edges, Y is the configura-
tion of the row above and the sum is taken over all allowed configurations of lines
on the intervening horizontal edges.

For example, note that the horizontal lines are the intervening configurations
of X = Y = ∅ so

V (∅, ∅) = aN + bN = Λ

1.2. Case n = 1. If we have one and only one down arrow then g(X) =: g(x)
where X = {x} and we want to solve Λg(x) =

∑
y V (x, y)g(y).

• x < y We only have one possible configuration, shown in Figure (2.a).
This gives us

V (x, y) = cby−x−1caN−(y−x+1)

where the number of vertices between x and y is denoted y − x+ 1.
• x > y Again, we only have one possible configuration, shown in Figure

(2.b). This gives us

V (x, y) = cbN+y−x−1cax−y−1)

where the number of vertices between x and y is denoted N − (x− y+ 1).
• x = y We have two possibilities here, shown in Figure (2.c). This gives us

V (x, y) = bN−1a+ aN−1b

Counting for all the various cases, the eigenvalue equation is

g(x) = aN−1bg(x) +
N∑

y=x+1

c2bN+y−x−1ax−y−1)g(y) + abN−1g(x) +
x−1∑
y=1

c2by−x−1aN−(y−x+1)g(y)

(1.1)
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Bethe Ansatz. Assume that g(x) = zx for some z as of yet undetermined.
Then

N∑
y=x+1

c2bN+y−x−1ax−y−1)zy =c2aN−2zx+1)
N∑

y=x+1

(
bx

a

)y−x−1

=c2aN−2zx+1) 1−
(
bx
a

)N−x
1− bx

a

=
c2aN−2zx+1)

a2 − abz
− ax−1bN−xc2zN+1

a− bz
Similarly,

sumx−1
y=1c

2by−x−1aN−(y−x+1)zy =− c2abN−1zx)

a2 − abz
+
ax−1bN−xc2z

a− bz
so adding these we get for the right hand side of (1.1):

aN−1bzx +
c2aN−2zx+1)

a2 − abz
− ax−1bN−xc2z

a− bz
(zN − 1) + abN−1zx − c2abN−1zx)

a2 − abz

=aN
(
ab+ (c2 − b2)z

a2 − abz

)
zx − ax−1bN−xc2z

a− bz
(zN − 1) + bN

(
a2 − c2 − abz
ba− b2z

)
zx

we can eliminate the unwanted term (the coefficient of (zN − 1) by simply setting
zN = 1. Then

Λ = aN
(
ab+ (c2 − b2)z

a2 − abz

)
zx + bN

(
a2 − c2 − abz
ba− b2z

)
zx

All the eigenvalues corresponding to the roots of zN = 1. We would need to do
some additional work in the general case.

1.3. Proposition. The preferred eigenvector of V for n = 1 is the vector
g(x) = 1 for all x = 1, . . . , N and have a corresponding preferred eigenvalues

Λ = aN
(
ab+ (c2 − b2)

a2 − ab

)
zx + bN

(
a2 − c2 − ab
ba− b2

)

2. Case n = 2

Now, g(X) = g(x1, x2) for 1 ≤ x1 < x2 ≤ N and V (X,Y ) = 0 unless either
x1 ≤ y1 ≤ x2 ≤ y2 or y1 ≤ x1 ≤ y2 ≤ x2.

The contribution for the first type is

ax1−1E(x1, y1)D(y1, x2)E(x2, y2)eN−y2

where

E(x, y) =

{
cby−x−1 if x < y
b/c if y = x

and

D(y, x) =

{
cax−y−1 if y < x
a/c if y = x
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Now, consider the following case:

• x1 < y1: In this case we have one vertex of type (5) for x1 and y1−x1−1
vertices of type (4); for y1 we could have a vertex of type (2) or (6). Then
E(x1, y1) = cby1−x1−1.

• x = y: In this case we have one vertex of type (1) so we have E(x1, y1) =
b/c.

• y1 < x2: Here, if x1 = x2 we’ve already counted y1. If on the other hand if
x1 < y1 then we add these contributions x1 < y1: D(y1, x1) = cax2−y1−1.

• y1 = x2: In this case we have the partition x1 < y1 = x2 < y2 which
corresponds to a vertex of type (2). Then D(x, y) = a/c

• x2 < y2:Similar to the above, we have E(x2, y2) = cby2−x2−1

• x2 = y2:Similar to previous two, E(x2, y2) = b/c.

Thus the eigenvalue equation is

Λg(x1, x2) =
∑

x1≤y1≤x2

∗∑
x2≤y2≤N

ax1−1E(x1, y1)D(y1, x2)E(x2, y2)caN−y2g(y1, y2)

+
∑

1≤y1≤x1

∗∑
x1≤y2≤x2

by1−1E(y1, x1)D(x1, y2)E(y2, x2)cbN−x2g(y1, y2)

where the star indicates that we’re adding the condition that y1 < y2.

2.1. Ansatz for the Eigenvector. We will assume g takes the form g(x1, x2) =
A12z

x1
1 zx2

2 A12 where A12 is constant.

Use the ansatz, the first double sum becomes

∑
x1≤y1≤x2

∗∑
x2≤y2≤N

ax1−1E(x1, y1)D(y1, x2)E(x2, y2)caN−y2zy11 zy22

=
∑

x1≤y1≤x2

ax1−1E(x1, y1)D(y1, x2)czy11

∑
x2≤y2≤N

E(x2, y2)aN−y2zy22

The second summand here can be rewritten as follows:

=
b

c
aN−x2zxz2 +

N∑
y2=x2+1

cby2−x2−1aN−y2zy22

=
b

c
aN−x2zxz2 + caN−x2−1zx2+1

2

N∑
y2=x2+1

(
bz2

a

)y2−x2−1

=
b

c
aN−x2zxz2 + caN−x2−1zx2+1

2

1−
(
bz2
a

)N−x2

1− bz2
a
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The first sum then is the sum of the y1 = x1 part, the y1 = x2 part and
standard part.

ax1−1bax2−x1−1czx1
1 + ax1−1cbx2−x1−1zx2

2 +
x2−1∑

y1=x1+1

(
bz

a

)y1−x1−1

=ax2−3c3

By Baxter, the result will eventually be

A12{ax1(L1a
x2−x1zx1

1 +M1b
x2−x1zx2

1 )× (L2a
N−x2zx2

2 +P2b
N−x2zN2 )

−aN+x1−x2−1bx2−x1(z1z2)x2}
Where

Li = L(zi) :=
ab+ (c2 − b2)zi

a2 − abzi

Mi = M(zi) :=
ab+ c2 − abzi
a2 − abzi

Pi = P (zi) :=
c2zi

a2 − abzi
Similarly, the second sum is

‘A12{(ax1P1 +M1b
x1zx1

1 )× (L2a
x2−x1zx1

2 +M2b
x2−x1zx2

2 )bN−x2

−ax2−x1bN+x1−x2(z1z2)x1}
Now, opening these sums we get three types of terms: wanted terms, unwanted

internal terms and unwanted boundary terms. We will deal with them in order.
• Wanted Terms The wanted terms are those proportional to g(x1, x2) ie

the terms
A12

(
aNL1L2 + bNM1M2

)
zx1

1 zx2
2

Assuming we can cancel out the remaining terms, these will give rise to
an eigenvector with eigenvalue

Λ = Λ(z1, z2) = aNL1L2 + bNM1M2

where z1 and z2 have yet to be determined.

• Unwanted Internal Terms These are terms that contain (z1z2)x1 or (z1z2)x2

and include in particular (but not exclusively) those coming from the sub-
tracted terms above, ie

A12

(
aN+x1−x2bx2−x1(M1L2 − 1)(z1z2)x2

)
+A12

(
ax2−x1bN+x1−x2(M1L2 − 1)(z1z2)x1

)
Exercise. Show that M1L2 − 1 = −c2s12/[(a− bz1)(a− bz2)] where

s12 = 1− 2∆z2 + z1z2

∆ =
a2 + b2 − c2

2ab
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• Unwanted Boundary Terms Let Rj(x, x′) := Lja
x′−xzxj + Mjb

x′−xzx
′

j .
These terms are then

−A12a
x1bN−x2R1(x1, x2)P2z2

and
−A12c

x1bN−x2R2(x1, x2)P2

3. Elimination of Unwanted Terms

3.1. Elimination of Unwanted Internal Terms. We will try to eliminate
the internal terms of the form

∑
r A

(r)
12 z

x1
1,rz

x2
2,r. We will first require that Λ defined

as above is independent of r. Our second requirement will be that we can fins z′1
and z′2 such that z1z2 = z′1z

′
2 and Λ = Λ′.

By eliminating z′2 we are left with a quadratic equation so the solution must
be either zi = z′i or z′i = z3−i. Recall now the ansatz:

g(x1, x2) = A12z
x1
1 zx2

2 +A21z
x1
2 zx2

1

Then the unwanted terms will cancel if

(M1L2 − 1)A12 + (M2L1 − 1)A21 = 0

But using the formula from the exercise this simplifies to

s12A12 + s21A21 = 0

but these are equations in A12 and A21 in terms of z1 and z2 so the solution is
A12

A21
= −s21

s12

3.2. Elimination of Unwanted Boundary Terms. We can rewrite the
contribution from the boundary terms as

−ax1bN−x2
{
P2R1(x1, x2)(zN2 A12 −A21)− P1R2(x1, x2)(zN1 A21 −A12)

}
So these terms vanish if

zN1 =
A12

A21
= −s21

s12

zN2 =
A21

A12
= −s12

s21

Or, explicitly

zN1 =
1− 2∆z1 + z1z2

1− 2∆z2 + z1z2

zN2 =
1− 2∆z2 + z1z2

1− 2∆z1 + z1z2

Before moving on, its interesting to observe that if we multiply these two equa-
tions together we get (z1z2)N = 1 so z1z2 = κ is an N ’th root of unity of 1. This
then implies that

g(x1 + 1, x2 + 1) = z1z2g(x1, x2) = κg(x1, x2)

Now, by the PF κ = 1 since otherwise the entries (?) could be all of R∗+. Thus
z1z2 = 1 and
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g(x1, x2) =A12z
x1
1 zx2

2 +A21z
x1
2 zx2

1

=A21

(
A12

A21
zx1

1 zx2
2 + zx1

2 zx2
1

)
=A21

(
zN+λ1

1 zx2
2 + zx1

2 zx2
1

)
Set z1 = exp(ik). Then

g(x1, x2) = A21 exp(iK(N + x1 − x2)) + exp(−iK(x1 − x2))

= A21 exp
(
iNk

2

)
2 cos

(
K

(
x1 − x2 +

N

2

))
∝ cos

(
K

(
x1 − x2 +

N

2

))
Now, A21 only depends on z1 and z2 not on x1 or x2 and so is constant and can
be dropped from the eigenvector. As 1 ≤ x1 ≤ x2 ≤ N the quantity x1 − x2 +N/2
ranges over [−1 + N/2, 1 −N/2] = [−r, r] where r = N/2 − 1. To make sure that
g(x1, x2) is real and positive it is sufficient to check that either k ∈ [−π/2r, π/2r]
or k ∈ iR∗ is purely imaginary.

Now,

zN1 = − 1− 2∆z1 + 1
1− 2∆z−1 + 1

= − 1−∆z1

1−∆z−1
1

But then zN1 −∆zN−1
1 = −1 + ∆z1 and so

∆ =
zN1 + 1

zN−1
1 + z1

=
eiNK + 1

ei(N−1)K + eiK

=
cos((r + 1)K)

cos(rk)
This implies two things:
(1) If ∆ < 1 then the above equation has a unique real solution in [0, π/2r]

and no purely imaginary solutions.
(2) If ∆ > 1 then the above equation has no solutions in [0, π/2r] and a single

purely imaginary solution.
This solution (which depends on ∆) is the PF solution.

4. Case: General n ≥ 3, x ≤ N

Let X = {xi} be the vector of increasing points 0 ≤ x1 < . . . < xn ≤ N and
let Y = {y1} be the vector 0 ≤ y1 < . . . < yn ≤ N . Again, V (X,Y ) = 0 unless X
and Y interlace, ie

x1 ≤ y1 ≤ . . . ≤ xn ≤ yn(4.1)
or

y1 ≤ x1 ≤ . . . ≤ yn ≤ xn(4.2)

The corresponding configurations are then given in Figure 3
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•
x1

•
y1

x2
•

xn
•

yn
•. . .

Equation 4.1

•
y1

•
y2

•
yn

x1
•

xn
•. . .

Equation 4.2

Figure 3. Diagrams of line configurations in the case of general n

And the eigenvector reads

Λg(X) =
∗∑

X≤Y

ax1−1E11D12E22D23 . . . Ennca
N−yng(Y )

+
∗∑

Y≤X

by1−1D11E12D22E23 . . . Dnncb
N−xng(Y )

where the ∗ indicates that yi = yi+1 is not allowed and where Dij = D(yi, xj) and
Eij = E(xi, yj).

Now, the first sum gives

A1...n{ax1R1(x1, x2) . . . Rn−1(xn−1, xn)× (LnaN−xnzxnn − PnbN−xnzNn )− terms for y1 = yi+1}

and the second sum gives

A1...n{(P1a
x1 +M1b

x1zx1
1 )R2(x1, x2) . . . Rn(xn−1, xn)bN−x2 − terms for y1 = yi+1}

Each R is the sum of 2 terms, so the above are really 2n−1 terms. Only one of these
terms is ”wanted”:

Λ = aNL1 . . . Ln + bNM1 . . .Mn

aside from the boundary terms, other terms contain at least one of the following
factors: (zjzj+1)xj+1 (corresponding to yj = xj+1 = yj+1) or (zjzj+1)xj ). This
leads to that following.

Bethe Ansatz.

g(x1, . . . , xn) =
∑
σ∈Sn

Aσz
x1
σ(1) . . . z

xn
σ(n)

Now, the unwanted terms cancel if

Sσ(j)σ(j+1)Aσ + Sσ(j+1)σ(j)A(jj+1)σ = 0

The boundary terms contain one factor of Pj for some value of j so by replacing
z1 . . . zn by z2 . . . zn, z)1 we can show that the boundary terms vanish if

−zN1 A2...n1 +A1...n = 0

and more generally that they vanish if

zNσ(i) =
Aσ(1)...σ(n)

Aσ(2)...σ(n)σ(1)
(4.3)

The above are sufficient to get an eigenvector. Now let consider the implications.

Sσ(j)σ(j+1)Aσ + Sσ(j+1)σ(j)A(jj+1)σ = 0
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has the solution

Aσ = (−1)σ
∏
i<j

sσ(j)σ(i)

so substituting into Eq. (4.3) we get

zNσ(i) = (−1)n−1
n∏
`=2

sσ(`)σ(1)

sσ(1)σ(`)

which give the Bethe Equations

znj = (−1)n−1
n∏
`=2

s`,1
s1,`

5. The Maximum Eigenvalue

Consider the ”trivial” case ∆ > 1. Then let Λn denote the maximum eigenvalue
of V on the subspace with quantum number n. It was proved that Λ0 > Λi for
1 ≤ i < n and that Λ0 ≥ Λn. But this implies that

Λmax = Λ0 = aN + bN

so f = min(ε1, ε2) and the most likely state of the system is one where all arrows
point up (n = 0) or down (n = N) and is unique.

6. Thermodynamic Limit: ∆ < 1

We will proceed as we did in the case n = 2. If zj = exp(iKj) then

s`,j
sj,`

=
1− 2∆eiKj + ei(Kj+K`)

1− 2∆eiK` + ei(Kj+K`)
=: exp(−iθ(Kj ,K`))

Note that if zj 6= 0 then s`,j , sj,` 6= 0 and so their s`,j/sj,` ∈ C×. Now, assuming
that zj lies on the unit circle (so Kj are real) we have

exp(−iθ(p, q)) =
1− 2∆eip + ei(p+q)

1− 2∆eiq + ei(p+q)
(6.1)

=
(1− 2∆eip + ei(p+q))(1− 2∆e−iq + e−i(p+q))
(1− 2∆eiq + ei(p+q))(1− 2∆e−iq + e−i(p+q))

=
2 + 2 cos(p+ q)− 4∆(eip + e−iq) + 4∆2ei(p−q)

2 + 4∆2 + e−i(p+q) − 2∆(e−ip + eip)− 2∆(e−iq + eiq)

=
2 + 2 cos(p+ q)− 2∆(eip + e−iq) + 4∆2ei(p−q)

2 + 4∆2 + 2 cos(p+ q)− 4∆ cos(p)− 4∆ cos(q)

Note, it’s clear that this last sum is symmetric under the change p ↔ q so xj and
s`,j are indeed on the unit circle.

Now, consider z
w where |z| = |w|. Then

z

w
=
zw̄

ww̄
=
a+ ib

ww̄
= ρeiθ
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where ρ = 1 and θ = tan−1 b/a. Now, we will need the following relations:

eip + e−iq = e
i
2 (p−q)

(
e
i
2 (p+q) + e−

i
2 (p+q)

)
= 2e

i
2 (p−q) cos

(
i

2
(p+ q)

)
and

2∆ei(p−q) − (eip + e−iq) = 2
(

∆ei(p−q) − e i2 (p−q) cos
(
p+ q

2

))
Now, it’s clear that the denominator of the last line of Eq. (6.1) is actually the
norm squared of a diagonal fraction of modulus 1 (since it is symmetric in p and
q). The numerator is

2 + 2 cos(p+ q)− 2∆(eip + e−iq) + 4∆2ei(p−q)

=2(1 + cos(p+ q)− 4∆e
i
2 (p+q) cos

(
p+ q

2

)
+ 2∆2ei(p−q)

After further simplification we find that this is

= eiΘ(p,q)

where

Θ(p, q) = 2 tan−1

{
∆ sin p−q

2

cos p+q2 −∆ cos p−q2

}

7. Summery

Give that Θ(p, p) = 0,

exp(iNKj) = (−1)n−1
n∏

`=1, 6̀=j

exp[iΘ(Kj ,K`)]

= (−1)n−1
n∏
`=1

exp[iΘ(Kj ,K`)]

Taking log of both sides we get

NKj = 2πIj −
n∑
`=1

Θ(Kj ,K`)(7.1)

for some Ij ∈ Z if n is odd and Ij ∈ Z + 1
2 if n is even. What do we want to take

for our Ij :

• Kj should be distinct but packed as closely as possible.
• Since Kj ≈ 0 and Θ(p, q) ≈ 0 for p, q ≈ 0 we should have Kj ≈ Ij2π/Nj
• To have Kj distinct and as dense as possible we must make sure that
Ij+1 − Ij = 1.

• Symmetry about 0. Ie, Ij + In−j+1 = 0, or equivalently that I1 = −n−1
2 .

Then

Ij = j − n+ 1
2
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Now, Yang and Yang showed that there exists a unique real solution of (7.1)
with Ij given by the above conditions. Then in the Thermodynamic Limit these
stay solutions of (7.1) as N →∞ and n

N fixed since n
N is the probability of a given

arrow to be an up arrow in the configuration. Thus n → ∞ and K1, . . . ,Kn (or
rather ∂K1 + . . .+ ∂Kn) tends to a distribution on R.

Define a function

ρ(K)dK =
# of zero’s between K and K + dK

N
Then

NKj = 2π
(
j − n+ 1

2

)
−

n∑
`=1

Θ(Kj ,K`)

Taking n,N →∞ we have
•

N

n
Kj →

N

n
K

•
n∑
`=1

Θ(Kj ,K`)
n

→
∫

Θ(k, k′)ρ(k′)dk′

•
j

n
→
∫ K

−∞
ρ(K ′)dK ′

since there are j(−1) K`’s less than Kj .
So in the limit we get

N

n
K = 2π

∫ K

−∞
ρ(K)dK ′ − π −

∫
Θ(K,K ′)ρ(K ′)dK ′

which implies that
N

n
= 2πρ(K)−

∫
∂Θ
∂K

(K,K ′)ρ(K ′)dK ′

so in the end we get an integral equation

2πρ(K) =
N

n
+
∫
∂1Θ(K,K ′)ρ(K ′)dK ′

This can be solved by Fourier Integrals.
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