Exactly solved models of statistical mechanics

Valerio Toledano Laredo

Notes from a graduate cours given at Northeastern University in Spring 2011






Contents

[Chapter 1. The Enveloping, Affine and Loop Algebras of SL(2)|

[I. The Lie Algebra sl

2. The Affine Lie Algebra s[ﬂ

[3. The Affine Kac-Moody Algebra g
4. _Inner Products|

[o. _Root Systems|

[6. Decomposition of g to Copies of slo|
7. 'The Enveloping Algebra of a Lie Algebral
8. Representations of hl

9. Verma Modules|

[10.  Integrable Modules|

| SO E |

[Chapter 2. Quantum group U,sly|
[T. Gaussian integers|

2. Definition of U, sl

3. PBW theorem|

[4. " Representation theory of Ugsly|

[5. Hopf algebra structure|

6. Quasi—triangular structure|

|Chapter 3. Quantum affine sls: Uqﬁ[gl
1. Two Presentations of U,sl)|

2. Finite Dimensional Representations of U,sly|
3. The Drinfeld Polynomiall
4. Tensor Products of Irreducible U,sly-modules|

|Chapter 4.  Introduction to Statistical Mechanics|

[References
T Motivation

2 Tho M Tl E T
[3._Temperature|

B An Alternative Distribution]

[Chapter 5.  Quantum Groups and Statistical Mechanics|
[T, One-dimensional Ising model|
2. Two-dimensional Ising model on a square lattice|

|Chapter 6. Ising Model on the Honeycomb Lattice)

3

ol
51
53
54
64

69
69
69
70
71
71
72

(6]
(0]
79

83



4 CONTENTS

1. Low and High Temperature Duality|
2. High Temperature Representation for L), = L¢ on the triangle lattice|

3. The Star-ITriangle Duality|
Md__Renormalizafion]
|Chapter 7.  Ising Model on the Square Lattice]|
[I. Commuting transfer matrices|
2. Commutationl
B Tnversionl

4. Ice Type Models|
5.  Transfer Matrix]

[6.  Star-Triangle Relation|

7. Parameterizing Solutions of Eq (6.1])

8.  Yang-Baxter on R Implies Commutativity of V|
9. The Construction of Baxters Q-Matrix]|

[10.  5pin Operators|

[TT. Consequences of Baxters Ansatz]

12.  The 5Six Vertex Model Continued|

113.  Line Configurations|

|Chapter 8. The Six Vertex Model Continued)|
L. Line Configurations|
B T A IT. |
4. Case: General n > 3, x < N|
5. The Maximum Eigenvalue]
6. Thermodynamic Limit: A < 1|

. Summeryj

83
84
85
88

89
89
90
91
96
98
99
102
103
106
110
111
112
112

117
117
119
122
123
125
125
126



CHAPTER 1

The Enveloping, Affine and Loop Algebras of
SL(2)

1. The Lie Algebra sls
1.1. Definition. The Lie Algebra sl can be presented as the set of trace 0,

2 X 2 matrices:
L=lla b
= —a

0 1 00 1 0
=lo o =[] el A
form a basis of sly. Their lie algebra structure then is given by taking the com-

mutator in multiplication and yields the identities [h,e] = 2e, [h, f] = —2f, and
e, f] = h.

a,b,cE(C}

Then

1.2. Bilinear Form. Now, there exists a bilinear form (-,-) on sly given by
(x,y) = trcz (zy). This form is symmetric, non-degenerate and invariant under the
bracket: ([z,vy],z) = —(y, [z, 2]). For example:

(e,e) =tr e =0 = (f, f)
(e,f) =tref =1=(f.¢)
(h,h) =tr h* =2

(h,e) =tr he =0 = (hf)

so the dual basis given via (-,-) has f dual to e, and % dual to h.

1.3. Casmiur Operator and Finite Dimensional Representations. The
next three results are elementary and will not be proven. Let g be a Lie Algebra
with basis z* and dual basis z; for i € I some indexing set. Let V be a vector space
and let p: g — End (V) be a representation of g. Then the Casmiur operator of p
is

Cip) = Zp(x’)p(xl) = lexl =zl

where the first equality comes from abuse of notation and the second comes from
Einstein’s summation convention:

1.3.1. Proposition. If p is an irreducible representation of g and if C(,pe) = 0
Vz € g then C,) acts as a scalar on V.
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1.3.2. Proposition. All finite dimensional representations of sly are completely
reducible.

1.3.3. Proposition. For all n € N there exists a unique representation V,, of sl
of dimension n+ 1 given by V,, 2 C, [z, y] (- the set of polynomials in two variables
the sum of whose degree’s is n) with

0 0 0
e T —Yy— h—r——y—
dy / y@az Oz yay
It is a simple check that with the basis 2'y"~% for i« = 0...n this is a n + 1
dimensional representation of sly. For Example, Vi =< z,y >= C2.

1.4. Character Formula. From here on out, g = sly. Let V be a represen-
tation of V. Then V is the direct sum of eigen spaces of h: V' = @xecV|y where
Vin is the A eigen space of h aka the weight space of A and C is understood to be
the 1-dimensional dual vector space of h, ie h* = Ch.

Now, the character formula is ch(V) = Y dim Vjyje* € Zh* where €* is a
formal symbol chosen for the fact that e’ e*? = e 22 It can be shown that for
an exact sequence of g-modules

0—-U—-V—->W-=0

the splitting of the sequence (true for any sequence of vector spaces) gives us
ch(V) =ch(U)4ch(W). It can also be shown that if U,V are g-modules that
ch(U ® V) =ch(U)-ch(V).

Now, let V' = V,, be as above and notice that V},,_y; is generated by 2" 1y’ and
so is 1-dimensional. Then for the weight space decomposition V' = V},,; @ V},,_g] ®
... @ V|_p give us that

n entl _ ef(nJrl)
(V) =3 (Vo) = " + "2 4. fem =
i=0

el — o1

Our last result for finite dimensional representations of g is the Clebsch-Gordau
Rule:

Vm & Vn = Vm+n @ Vm+n—2 D...0D ‘/|mfn\
As an example of the above we can compute V,, ® Vi = V11 & Vi1

2. The Affine Lie Algebra 5/[\2

2.1. The Loop Algebra of sly. Let g = sl;. Then the loop algebra of g is
the Laurant series in z with g coefficients: Ly := g[z,z7!]. For f(z),g(2) € Lg,
the bracket [f,g](z) = [f(2),g(z)] defines a Lie Algebra structure on Lgy. Using
the notation z(n) = v ® 2" for x € g and n € Z we can rewrite the bracket as
[z(n),y(m)] = 22" - yz™ — y2" - 22" = [z,y] @ 2"T™ = [z, y](m + n).

Now, let g = Cf @ Ch @ Ce by the standard decomposition with [h, €] = 2e,
[hf] = —2f. Then if we look at the action of ad(h) = [h, ] on g then Cf,Ch and
Ce are eigen spaces of weights —2, 0 and 2 respectively. Similarly, the loop space
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decomposes as Ly = Cf[z,271] @ Ch[z,z7 1] & Ce[z, 2~ 1] with ad(h) again acting
on these spaces as -2,0, 2 eigen spaces respectively. However, unlike in the above
case, each of these eigenspaces are infinite dimensional.

2.2. The Extension of Ly by a Derivation. First, let d be the derivation
of Ly given by dx(n) = nx(n) (ie d = z%). Then d satisfies the Libnetz Rule:
dlf,g) = [df, g + [f, dg] since

dfz(n),y(m)] = (n+m)[z(n), y(m)] = nlz(n), y(m)l+mz(n),y(m)] = [de(n),y(m)]+[z(n), dy(m)]

and d commutes with addition. Now, let g := Ly % Cd be defined to be the Lie
Algebra that is Ly ®Cd as a vector space with Ly C g as a subalgebra in the obvious
way and the bracket on Ly extended by the relation [d,d] := 0 and [d, f] := d(f)
and bilinearity.

2.2.1. Exercise. For a general Lie algebra g, show that the algebra g construed
from g as above is a Lie algebra.

Lets look at decompositions of g = slp. First, g = g— ® Ch ® Cd ® g4 where
g+ = 20[z] © Ce[z] and g = 27 'g[z" "] ® Cf[z7"]

Now, Celz,27 '] = @,Ce(n). Notice that each Ce(n) is an eigenspace with
eigenvalue 2 w.r.t. h and and eigenspace with eigenvalue n w.r.t. d. Similar results
hold for Cf[z, 27! and Ch[z,27!] so we get the following decomposition of g:

g= ¢ 9(tn)
te{—-2,0,2}, n€z

where g ) is a eigenspace ¢t w.r.t. h and n w.r.t. d. Note that each g, is finite
dimensional (in fact 1-dimensional unless ¢ = n = 0 in which case g ) = Ch@®Cd).

Now, since Ly C g, any representation of g restricts to a representation of Lg
in the natural way but there exists representations of Ly which do not extend to a
representation of g.

2.2.2. Ezxercise. Show that the representation V, given in Definition 1.1 does
not extend to a representation of g.

Now then, what is an example of of a g representation? Let V be a finite
dimensional g module under p. Then V(z) = V[z,27!] (=: LV) is acted on by Lg
by z(n) — Xz" = p(z)z" and is also acted on by d by d — D = zL. Then

d d
(D, X(n)](ao+a1z+...+apz") = (deXz" - inzdz) (ao+arz+... +apz®) =

nXao+(n+1)Xa 2" 4. +(n+k) Xapz"TF = (Xa 2" 42X ap2" T2 4. . +kapz"tF) =
=nXao+ (n+1)Xa12" — Xa1 2" + .+ ((n+ k) Xapz""* — kap2"tF))
=nXag+nXaz" + ...+ nXa 2" =

nX(2)(ag 4+ a1z + ...+ apz")

so [D, X (n)] = nX(n) as required and so this defines an action of g on LV. There-
fore any finitely generated g module gives us a representation of g.
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3. The Affine Kac-Moody Algebra g

From physics, we want to study the algebra g perturbed by a central extension
to what is called the Affine Kac-Moody Algebra.

3.1. Central Extensions. Given a Lie Algebra L, a central extension of L is
a lie algebra L such that
0—a—L—L—0

where a € Z(L) is an abelian subgroup of L.

3.1.1. Ezample: The Heisenberg Algebra /2 is the algebra generated by p, q, z
such that [p,q] = z, [2,p] = 0 = [2,q]. z is a central element of J# and JZ is a
central extension of C2:

0—-Cz—# —C>—=0

Where C? is generated by p,q s.t. [p,q] = z = 0. It can be seen that J# is the
algebra generated by p = %, z=1and qg =z.

Now, as a vector space a central extension is simply L = L & a since short
exact sequences of vector spaces split. For a,a’ € a, z,y € L the lie algebra

structure is given by [a,a’]” = 0 since a is abelian, [a,z]” = 0 since a is central and
[z,9]" = [z,y] + B(z,y) where B(z,y) € a.
Since [-,+]" is skew symmetric, B : LA L — a. We call B a 2-cocylce on L with

values in a if
B([z,y],z) + B(ly, 2], z) + B([z, 2], y) =0
3.1.2. Ezercise. B defines a Lie algebra structure on L & a.

Assume that B is a skew symmetric 2-cocycle. Then we have a Lie Algebra
structure on L @ a given by a central extension of L by a.

Now, let j : L — L = L @& a be a map into L where j(z) = z & A(z) and
A(z): L — a.

3.1.3. Ezercise. Show that B'(z,y) = B(z,y) + A([z,y]) is a 2-cocycle.

Similarly, we will call such a map A([z,y]) a 2-coboudry.
3.1.4. Ezercise. Show that a 2-coboundary is always a 2-cocycle.

Then we define H?(L, a) to be the 2-cocylces modulo the 2-coboundries.

3.1.5. Claim: H?(L,q) classifies the central extension of L by a..

3.1.6. Definition. Given two central extensions, an isomorphism of central ex-
tensions is a map ¢ such that the following commutes:

0O - a - L — L — 0

I e

0O - a - L — L — 0

We have seen above that to each central extension of L by a we can assign an
element of H2(L,a) given by the image of the map B.
3.1.7. Ezercise. Show this map is an isomorphism..
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3.2. Affine Kac-Moody Algebra. We now come to the title of this section:
I//B is the central extension of Lg by C with B(z(n),y(m)) = ndpimo(z,y). We
begin by showing that B is a 2-cocylce. First, forz(n),y(m) € g, B(z(n),y(m)) is
skew symmetric since since it is only nonzero if m = —n. But if m = —n then for
B(z(n),y(m)) = n(x,y) = —(—n(y,x)) = B(y(m),z(n)) as required. The other
property of 2-cocycles is satisfied as follows: for z(n),y(m), z(p) € g,

B([z(n),y(m)], 2(p)) + B([y(m), z(p)], (n)) + B([z(p), x(n)], y(m)) =
B([z,yl(n +m), 2(p)) + B[y, z](m + p), z(n)) + B([z, 2](n + p),y(m)) =

= (n+m)bntmtp,0([2, Y], 2) + (M +P)miprno([y, 2], 2) + (0 +P)ntprm.o([2: 2], y)
In this last equation, clearly if n + m + p # 0 then the above is 0. Assume n +
m + p = 0. Then, since (-,-) is symmetric and satisfies ([z,y],2) = —(y, [z, 2]),we
have the identity’s ([y,z],2) = —(z,[y,z]) = (2,[z,y]) = ([z,y],2) and similarly
([z,2],y) = ([z,y], 2) so the above becomes

= (n+m)([z,y],2) + (m +p)([y, 2], 2) + (n + p)([z, 2], 9)

— (n+m)([z, ], 2)+ (m+p) ([, ), 2) + (n+0) ([, 9], ) = 2(n+m+p)([2,9],2) = 0
by the assumption that n +m + p = 0.

Then Lg = Lg @ C as a vector space with [z(n),c]” = 0, [z(n),y(n)]" =
[z, y](n+m)+n0p1+m.o0(z,y)c. Let d be a derivation with d(xz(n)) = nz(n), d(c) = 0.

Then d is a derivation of Lg: (by linearity of the bracket and the fact that ¢ is
central, we only have to check for g1, g2 € Lg)

dz(n),y(m)]” = d([z,yl(n + m)) + d(ndnimo(z,y)c) = d([z, yl(n + m))

= (n+m)[z,yl(n+m)) = [dz(n), y(m)] + [2(n), dy(m)]

so d acts on Zé and so we can define the Kac-Moody Algebra g := IE x Cd with
[d, "= d(f).

4. Inner Products

We will now consider the extension of the bilinear forms on g to our new Lie
Algebras. First, there is a natural extension of any form (-,-) : g® g — C to
<> Lg® Lg — Clz,2z71] by letting < z(m),y(n) >= (x,y)2"+t™ and extending
linearly. Taking (-,-) to be the inner product on g we can define the following inner
product on Lg, namely, (p,q) =Res< p,q > /z.

4.0.1. Ezercise. Prove the following:

(1) (z(m),y(n)) = dm+no(z,y)
(2) On Lg, (-,-) is a nondegenerate bilinear form.
(3) (+,-) is invariant under the bracket

Then
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since Resz" ™™~ 1 #£ 0 iff n +m — 1 = —1 by definition. Its clear than that (-,-) is a
nondegenerate bilinear form: if p,q,r € Lg are of the form p = ... +p_12~ ' +pg +
p1z+ ...

<cap+cr,g> <Y apidt 4 ezt Y gzt > .
S = Res =
z z
Y <t +arizt gl > > (epi 4 eariyg5) 2
Res = Res

z z

(c1p+ car,q) = Re

= Res Z Z 5i+j,0(0117i + cari,y (Jj) = <Z(Clpi + cory, Q—i)> =0 Z(pu q—i)+co Z(Tz‘, q-i)

J i
=c1(p,q) + c2(p, q)
where the last equality can be gotten by reversing the beginning of the argument.
Linearity in the second term is the same computation. To see that Lg is nondegen-

erate simply notice that for any p € Lg, if pr # 0 for some k then there exists a y
such that (pg,y) # 0 by the nondegeneracy of the inner product on g and

(p,y(=k)) = Z(Si—k,o(piay) = (pr,y) #0

Finally, let’s check that (-,-) is invariant under the bracket:
([z(n), y(m)], w(k)) = ([z, y](n + m), w(k)) = Ontmino([z, 9], w) =

=Ontm+k,0(y; [, 2]) = —(y(m), [z(n), 2(k)])
Therefore (-, ) is indeed an inner product on Lg.

The question now is, can we extend such an inner product to be an inner prod-
uct on g? and the answer is no: Suppose we could, then since c¢ is central, if z,y € g,
(¢,[z,y]) = —([z,c],y) = 0 by invariance of inner product with respect to brackets.
Therefore c¢ is perpendicular to anything that is a bracket; but [g,g] = g so ¢ L [g, g
implies that ¢ L g so (-,-) cannot be nondegenerate. Therefore we cannot extend
an inner product on g to an inner product on g.

We can, however, extend it to an inner product on § by the following: (p, q) :=Res<
p,q > /z as before for p,q € Lg and (¢, §) := 0 as required by the argument above
so let (¢,d) := 1 so that ¢ isn’t perpendicular to everything in §. Finally, since for
m # 0,
(d, [d, z(m)]) (d, d], z(m))

(d,a(m)) = A - AGGETD

and for m =0, z,y € g,

(d7 [xa y]) = ([dv x],y) = (Oa y) =0
so (g, Lg) must be 0; we also let (d,d) = 0. This form is nondegenerate by con-
struction.

4.0.2. Ezercise. Show that the above construction is a non-degenerate, invari-
ant, bilinear form on g.
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4.1. Structure and Presentation of g. To determent he structure of g it
is useful to look at is center which we will denote §. Then § := Ch @ Ce & Cd C §.
Then g = 6 @y gy for all A that are joint eigen values of 6, ie eigen values of all h,
c and d. We will use this too say that g "looks like” sl3.

5. Root Systems

Fo now, let g = sl,, and let h C g be the abelian subalgebra of diagonal matrices.
Then g decomposed under the action of . Now, we call x € g a eigen vector of b if
there exists A € h* such that for all € b, [h, 2] = A(h)z. Now, if Ej; is the matrix
with a 1 in the k’th row and [’th column, it is a simple calculation to see that

[Eii, Eri] = (6ix — 0a1) Ent

So, if h is a diagonal matrix and 0, € b is the Kronecker delta wrt FEj; then
[h, Exi] = (0k(h) — 0,(h))Ex so the joint eigenvalues of g wrt b are {0 — 0;}x1-
Then the eigen vectors corresponding to these eigen values are precisely the Fjy;
and

5.0.1. Proposition/Defintion.

g=haPCEy
et

where Fj; is the weight space of 6, — ;. From here on we will denote the set
of nonzero roots of g by ® = {6y — O;}rr C h*\{0}, the set of positive roots
{0k — 0, }<i by 4 and the set of negative roots by &_ = —&, = {0 — 0}~ We
note that ®, is closed under addition and that ® = &, Ll ®_. Finally, the simple
roots A C &, are the set of indecomposable element of ¢ .

Let n+ = P, co ,8.C9g be the nilpotent upper and lower subalgebra, ie, given
a matrix representation of g we would have in block form

N+

/-

Then it is clear that just like breaks up as the direct sum of its center and its
nilpotent parts as slo = Cf @ Ch ® Ce, in general g =n_ & h D ny.

6. Decomposition of g to Copies of sl

6.0.2. Definition. We can define an inner product on g the same way as before,
by (z,y) =tr(adzad,). Since this inner product is nondegenerate it induces an
isomorphism between h and its duel space. Restricting this isomorphism to the roots
we get amap ® 3 a +— t, € b such that a(t) = (ta,t) Vt € h. Let hy == —2la— c b

- ((X7a)#0

denote the dual root to «.
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6.1. Theorem. (Serre) g decomposes into a (possibly infinite) number of
copies of sly and is presented as {e;, fi, h;} subject to

(6.1) [hi,hj] =0

(6.2) [hi, €] = aije;

(6.3) [hi, fi] = —aij f;

(6.4) lei, fi] = dijhi

(6.5) ad(e;)' "“e; = 0 = ad(f;)' = f; for i # j

Proof: Let a € ®. The Vz € g, and Yy € g_a, [z,y] = (z,y)ts so there exists
€a € go and f, € g_, such that [eq, fo] = ha. Now,

2a(ty) 2(a, @)
h(!?a: ha a = a — a:2a
hasea) =alhulen = (8t eo = (B ) o =2
and similarly, [hq, fo] = —2fa so by sending f — f,, e — eq and h +— h, we have

an embedding sly — g. Then for each positive root we have a copy of sly denoted
sly Cg.

Now, for a = 0, — 0, € @, let e, = Ey, fo = Eip and hy = Egp — Ey; in
addition for any simple root ; € A, let e; = eq,, fi = fa;; hi = ha,. Then
2(ev, o)
(a, )
where a;; € Z. In fact, a;; = 2 and a;; < 0 for ¢ # j. For example, for sl,,,

2 -1 0

[hiy ej] = aj(hi)e; =

€;, = aijei

(aij) = -

0 -1 2
We have now shown that g is generated by {e;, fi, h;} where for each i fe;, h;
generate a copy of slo. We will now show that the relations hold. (1)-(3) are
obvious, as for (4), if z € go and y € gg then [2,y] € go—p 50 [ei, f5] € ga;—a; =0
since all roots of g are either strictly positive or strictly negative combination of
simple roots. If i = j then [e;, f;] = h; by the relations for sls.

For (5), assume again the ¢ # j (the case ¢ = j is trivial). Then by (3) and
(4), fj € V_a,,(s19) so f is sitting in a representation of sly, (4) give us that f is
the highest weight vector in this representation so — f; is the lowest wight vector
in this representation. But this is the same as saying that ad(f;)'=%7f; = 0. A
similarly argument holds e;.

Therefore g decomposes into the direct sum of copies of sly indexed by the
simple roots.

6.2. The Decomposition For §. Lets return to the case g = sly. Recall that
h=bh@® Ccd Cd and let = {a, —a} with a € b*, a(h) = 2 be the root system of
g. Then the above decomposition yields

g=h @ san) P ao,n)

(a,n)EPXZ nezL*
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A Dbit of explanation is needed. The above roots come from the affine root system
® =& x Z0 U {0} X Z where § € h is a linear form dual to d, ie 6(d) =1, d(c) =
0(h) = 0. One way to think of this decomposition is as an infinite ” matrix”

graphichere

where each box is a copy of sly (or more generally sl,,). We call the elements labeled
+ positive roots and denote them <i>+ and those labeled — negative roots and denote
them & . Then &, = {® L0} x N*§ U {a} x {0-6} and &_.

The simple roots of ‘ihr come in two flavors. Looking at the n =0 and n =1
boxes we have simple roots ay = (a,0) and ay = (—a, 1). Outside of these boxes
we have similar simple roots: for all n > 0, (a,n) = n(—«,1) + (n + 1)(«,0),
(—a,n) =n(—a,1) + (n — 1)(e,0) and (0,n) =n(—a,1) + n(x,0).

Now, recall that we have a form (-,-) on g and that

(ol = (9 )

2ts
(&,a)

For & € h* — ts € h~ hg = so for (o,n) = £a +nd ~ th + nc and

(@,4) = 2 Real Roots +a+nd
“ 10 Imaginary Roots nd

Now, the simple roots are real. Let hy = h, hg = —h+c and let a1 = (,0), e = e,
f1 = fand hy = h; finally, let ag = (—«, 1), eg = f(1), fo = e(—1) and hg = —h+-c.

6.2.1. Ezercise. Check eqy, fo and hg form an sly triple.

Finally, we can calculate the affine Cartan matrix to be

R G

The affine Cartan matrix.

6.3. Theorem. § is presented on {ei, fiyhitizo.1 with

(6.6) [hi, hj] =
(6.7) [hi,e;] =

(6.8) [hi, fi] = a”f]

(6.9) e, ;] = Oijh

(6.10) ad(e;)!"e; = 0= ad(f;)! =" f;

Note, this is not § because this only has a 2 dim Cartan subalgebra, indeed g
is presented as above but with {e;, f;, h;,d}i=0,1 and the additional relations

(6.11) [d, hi] =0

(6.12) [d,er] = [d, f] = 0
(6.13) [d, eo] = e

(6.14) [d, fo] = —fo
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7. The Enveloping Algebra of a Lie Algebra

The enveloping algebra Ug is defined to be the the unique solution to the fol-
lowing universal problem:

Ug is an associative unitial algebra with a linear map p : g — Ug such that
p(x)p(y)—p(y)p(z) = p([x,y]) and if U is another such algebra there exists a unique
unitial algebra map 7 : % (g) — U such that

p p
\

g——>U

’

p

7.1. Proposition: Ug exists and is unique up to isomorphism.

Proof: Uniqueness is clear from the universal property. Define Ty := @, g®k
to be the tensor algebra. Now, let p : g — T as an element of degree 1 and let
Ug:=Tg/x®@y—y &z — [z,y] be the result of modding out Ty by the algebra
generated by the Lie bracket. Then p : g — Ug is simply p factoring through the
quotient. Clearly, this satisfies the requirement that

p(x)p(y) —py)p(r) =z @y -y @z = [z,y] = p([z,y])

For any other associative unital algebra U such that p’ : g — U we can define a map
p:Ug — U in the logical way by p: 21 ® ..., ®xk — p(x1) ...p(zk). Therefore Ug
is a universal enveloping algebra and so by uniqueness is the universal enveloping
algebra.

O

7.2. Properties of Ug. Any representation of g extends to a representation
of Ug. Indeed, if V is a g module with representation = we have by the universal
property the following diagram:

g —~ End

N

Ug
So V is a Ug via p.

Similarly, any representation of Ug corresponds to a representation of g by
composition:

Ug —"> End

g
Combining the two facts above we see that {Reps of g} = {Reps of Ug}.
Now, Tg = @, g°* is N graded but the ideal I = {z ®y —y®z — [z, y]} is not
homogeneous so Ug doesn’t inherit the grading from T'g. However, Ug is filtered
since the standard filtration of T'g descends to the filtration Ug = U,,enUg,, where

Uga = {pla1). .. plan)la; € g}.
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7.3. Lemma: The graded of Ug given by Gr(Ug) := ¢,Ug,,/Ug,_1 is com-
mutative.

Proof: This is a simple check: p(z)p(y) = p(y)p(z) + p([x,y]) in Ug so in
Gr(Ug), p()p(y) = p(y)p(x). H

7.4. Corollary: If Sg := @,>05"g is the symmetric algebra of g then Sg -~
Gr(Ug) by Sp 2 x +— p(x) €Gr(Ug) and S > x1...xk — p(z1) ... p(xx) €Gr(Ug)

7.5. Theorem: (PBW). The map o : Sg — Gr(Uyg) is in fact an isomor-
phism of graded algebras for any Lie algebras g over any field. The proof can be
found elsewhere.

7.6. Corollary’s of PBW:.
(1) dim Ug,,/Ugn—1 = dim S™g
(2) the defining map p : g — Ug is an embedding. This justifies writing x
instead of p(x) in Ug by abuse of notation.
(3) If {zs}aca is a basis of g then the lexicographically ordered monomials in
x, form a basis of Ug.
7.6.1. Ezercise. Prove the above.

(4) Suppose that as a vector space g = g1 @ go where g; are Lie subalgebras
of g, then by universality

Ug, SIS Ug

g —> 9
so Ug; ® Uge — Ug is a linear map of bimodules given by 7 : g1 ® g1 —
m1(g1) @ m2(g2). We claim that this is an isomorphism.

Proof: Choose an ordered basis {z% },ca: of g;. Then {{zl}oenr, {23 }penz}
is an ordered basis of g (if we put A; < As). Then any element z. ...z}, ®
x?...x% in the basis of Ug; ® Ugs corresponding to the bases above cor-
respond to the lexicographically ordered monomial z) ...z} 27 ... 22 in
the basis for Ug. This correspondence is clearly a bijection. O

7.7. Remark: Assume that the field K has characteristic 0. Then in addition
to the map Sg —Gr(Ug) there exists a map Sg — Ug given by the composition
Sg — Tg — Ug where z1...2 +— This map is an
isomorphism of filtered vector spaces.

w 2ocom To(1) - To(m)-

8. Representations of h
Recall that i = Ch @ Cc @ Cd.

8.1. Definition:
(1) A representation of § is diagonalizable if V = ®, ;. V) where V) = {v €
V|tv = MNt)v,Vt € h}
(2) A diagonalizable representation is called integrable if e; and f; act nilpo-
tently, ie Vv € V, In € N such that ej'v = f'v = 0.

Fori = 0,1, let ¢' :=< e;, fi, h; > sl,
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8.2. Proposition: If V is integrable, then as a g; module V' decomposes into
a possibly infinite direct sum of finite dimensional irreducible modules invariant
under the action of h. ie, V = @uec+ V! as a g° module.

8.3. Corollary: V integrates to a representation of the group Sléi) with Lie
algebra g;. _
Proof: Let v € V[A] and let 7, = g'v. Then

eiffv=rcififf v =hiff o+ fieiff o= fFhifT v+ flew
7=0

=< A-— (k—l—j)ai,hi >
since [t, f;] = —a;(t) f;. But this is

= k(< A\hi > —k+ 1)+ fFew

K2

soif 37 s fFemu is invariant under g; and h then we can calculate the effect of

applying h; to an element of v in the same way as we did for e; above. By local

nilpotence, 7, is finite dimensional so all v € V are contained in a finite dimensional

g’ submoduel v, invariant under h. By complete reducibility, v is then the direct

sum of finite dimensional sls moduels. The proof follows. O
Note: In general, V is not complete reducible as a § module.

8.4. Category 0. A representation V is in Category & if

(1) V is diagonal, ie V = ®xep= Vi
(2) Vi is finite dimensional
(3) There exist A1,..., A € h* such that the nonzero eigen values of V' de-
noted P(V) := {A|Vy # 0} C U~ {u € h*|pr < A\;} where p < X means
A — u is the sum of positive roots.
8.4.1. Ezxample: Let V be a highest weight representation of A € h*, ie there
Juv € Vy such that e;o = 0 and Ugv = V. Then since § = A & h @ iy by the
PBW Theorem, Ug = Ui @ Uh® Uty . Now, since Ufi, consists of powers of e;’s,
Unv =0 and since v is an eigen vector of Ub, Ugv = Uh_v.

8.4.2. FEzercise. Show that V is in catagory 0.

9. Verma Modules

9.1. Definition: M) is a Verma Module of highest weight A iff every module
of highest weight A is a quotient of M).

9.2. Proposition:

(1) For any A € 6* there exists a unique Verma module of highest weight .
(2) My is a free Un module of rank 1.
(3) M)y contains a unique maximal proper submodule.
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Proof:

(1) Uniqueness is clear from the definition. For existence, let Iy C Ug be the
left ideal generated by iy and (t — A(t).1) for t € b and set My = Ug/I,.
The M, is killed by fiy and ¢ € § acts on My by ¢.1 = A()1.

Furthermore, any mod. of highest weight representation will be given
by

(2) By PBW, Ug = Un_® Uh ® Ui, so when we mod out by Iy, we kill A
and 6 is identified with the scalars so Ug/I\ = Un_ as a left Un_ module.

(3) Let M’ C My be a submodule of M. We will show that M’ is proper iff
M'[A] = 0. First, if M'[A] # 0 then vy € M’; but then M, = Uguy C M’
so M’ = M. If M'[\] = 0 then M’ is clearly proper as it does not contain
UX-

Now, let M’ = EM,,QNA M" be the sum of all proper submodules,
then M'[\] = ZM/,QMA M"[A] = 0 so M' C M, is the unique proper
submodule of M. O

9.3. Corollary: There exists a unique, irreducible highest weight modules of
weight A denoted L(\).

Proof: Let L(A\) = M,/Mj. Then L(X) is clearly irreducible. It is unique
since if 7; : My — L;(\) then ker7; is a maximal proper submodule of My. Then
by part 3 of the the proposition ker m; = kermy so L1(A) = M) /kerm; = La(A). O

10. Integrable Modules

Recall that a g module is integrable iff h; acts diagonally and f;, e; act nilpo-
tently.

10.1. Proposition: L, is integrable iff A(h;) € Z4, i =0, 1.

Proof: =) hjvy = A(h;)vx and vy lies in a finite dimensional 5[éi) module

so A(h;) € Z by the representation theory of sly. Since e;uy = 0, A(h;) € Z>o.
stk sk ko stk sk ko sk sk ok sk ok -

<) We showed above that e;ffv = k(A(h;) — k — 1)fF'v so, in particular,
e,;fl,)‘(hi)+1v/\ = 0. Moreover, for j # i, ejf;‘(h'i)H = 0 since e; and f; commute.
This then implies that the submodule generated by fl)‘ (he)+1

Ug=Un @Uh® Un,, U decreases the weight of a vector, Uf scales a vector
and Un, increases the weight so it is impossible to ”capture” anything ”above”

fiA(hi)Hv)\. But L(A) has no proper submodules so fi)‘(hi')HvA = 0. It follows that
the f;’s are locally nilpotent since they are locally nilpotent on V) and are locally
nilpotent on g:

For m >> 0 and z; € n_, f"xy...xpvy =ad(f)™ (x;) - fM2v). By picking m
large enough we force my or mo to be large so, since f"2v) = 0 for some my and
ad(fi)! =3 (f;) = 0 by the serre relations f; acts nilpotently. O

is proper. Now, for
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10.2. Integrable Highest Weight Modules for sl;. Finally, we will look
at highest weight representations for g. The eigenvalues of h are of the form A=
hw = XA+ kAg + nd, where A € §*, Ag(c) = 1, Ag(h ¢ Cc) = 0, and (d) = 1,
d(h ¢ Cd) = 0.

Now, ¢V = k(¢)Vy so c|y = kid since ¢ is central. Then cAvy = Acvy = kdwvy.
If V is integrable, then A(hy) € Z, by the work done previously so A(hy) = A(h)
and Z, 3 Mho) = A(=h + ¢) = —\(h) + k. Now, L(}) is integrable iff A\(h) € Z,
and A(h) < k.

Fix k in N. Then, the irreducible representations of sl and sly are given by

5l : 0——@——@—9@—0—0 Glo: &——@——@—@—0—0

So there are a finite number of irreducible representations for any fixed k.
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11. Solutions to Exercises
(Exercise [2.2.1)) For a general Lie algebra g, show that g is a Lie algebra.
Proof: Clearly Ly is a Lie Algebra since all the properties of the bracket on Lg

follow directly from the linearity of the bracket on g and the definition [f, g](z) =
[f(2),9(#)]. Now, Let f,g € Ly and let ¢, co € C. Then

[f +c1d, g+ cad] = [f, 9] + [, c2d] + [e1d, g] + [c1d, c2d] = [, g] — c2d(f) + c1d(g)
First, this is bilinear since [, -] is and d is linear. It’s alternating since
[g+cad, fHerd] = g, fl—c1d(g)+c2d(f) = —([f, gl+—cad(f)+c1d(g)) = —[f+c1d, g+cad]

Finally,

[d, [f, 9]l + [, g, dl] + lg, d, f] = [d(f), g]) + [f, d(9)] + [f, —d(9)] + g, d(f)] = 0
and
(d, [d, f1] + [d, [f, d]] + [f, [d, d]] = [d, d(f)] + [d, =d(f)] + [f,0] = O
and by definition
[f> 19, Pl + g, [h, £1] + (R, [f, 9] = 0 = [d, [d, d]]
So since the bracket is bilinear,
[f +cid, [g+ cad, h + c3d]] + [g + cad, [h + c3d, f + c1d] + [h + c3d, [f + c1d, g + c2d]]

Can be rewritten as the sum of factors of one of the above four forms and so is 0
as required for the Jacobi Identity. [J

(Exercise [2.2.2]) The representation V' of Lg given by Definition 1.1 does not
extend to a representation of g.

Proof: If V.= C? is the representation given in Definition 1.1 then V is a
Ly module by p, : Ly —End(V) st g — g(a) for some a € C. Assume that this
representation could be extended to one of g. Then we would must have a matrix
pa(d) = D such that if v — X, [D, X(n)] = na(n). But

[D,X(n)] =DX(n)—X(n)D = DXa"—Xa"D = a"(DX—-XD) = a"[D, X] # nXa"

since [D, X] cannot equal nX for all n. Therefore V' does not extend to a represen-
tation of g.
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(Exercise [3.1.2) Show that a 2-cocylce defines a Lie algebra structure on the
central extension of L by a.

Proof: First,
[a1 + 21, a2 + 2] = [a1,a2]” + [a1, 22] " + [x1,a2]" + [21, 2]
so, since all these terms are 0 except the last, it suffices to check that [z, 23]" =
[x1,22] + B(x1,x2) satisfies the properties of the bracket. The bilinearity and
alternating properties follow from the definition of the wedge product. The Jacobi
identity holds by the definition of a 2-cocylce since
[117 [va}A]A = [x[y, Z] + B(y’ Z)]A = [.%', [y7 ZHA + [3373(%2” =

[z, [y, 2] + B(=, [y, 2])
since [z, B(y, z)] = 0. So
[, 1y, 2]"]" + [y, [z, 2] "] + [z [, 9] "] =
[z, [y, 21l + B(x, [y, 2]) + [y, [z, 2]] + By, [z, 2]) + [, [2, ] + B(z, [z,y]) = 0
and B defines a Lie Algebra structure on L & a. Furthermore, the short exact
sequence of vector spaces

l-a—-LPa—->L—1

is an ses of Lie algebras since both of the maps are Lie algebra morphisms: [a,a] =
0—0=[a,a]" and [z,y]" = [z,y] + B(z,y) [z, y] since B(z,y) € a.

(Exercise [3.1.3) Show that B'(z,y) = B(x,y) + A([z,y]) is a 2-cocycle.

Proof: First, B’ : L AL — a since B does and A is linear and [z,y] is skew
symmetric. Then fact that B’ is a 2-cocycle is a simple computation:

B'([z,y],2) + B'([y, 2], z) + B'([2,2],v)

([z,9], 2) + A([[, 9], 2]) + B(ly, 2], 2) + A([ly, 2], =]) + B([z, =], y) + A([[2, 2], 9])
([#, 9], 2)+B(ly, 21, 2)+ B([z, z], y) + A([[2, y], 21+ ly, 2], 2]+ [z, 2], y]) = 0+A(0) = 0

B
B

(Exercise [3.1.4) Show that a 2-coboundary is always a 2-cocycle.

Proof: First, A([z,y]) = A(—[y,z]) = —A([y,z]) so A: LA L — a. Now, by
linearity,

Allz, y], 2D)+A([ly, 2], )+ Az, 2], w]) = Al[z, y], 2]+ [ly, 2], ] +[[z, 2], y]) = A(0) = 0
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so A([z,y]) is a 2-cocycle.

(Exercise|3.1.7) Show the map taking an isomorphism class of central extension
of L by a to its corresponding element in the homology H?(L,a) defined above is
an isomorphism.

Proof: Since central extension is defined by a 2-cocycle this map is clearly
onto; since every map B : L A L — a defines a Lie algebra structure on L & a we
simple need to check that two central extension are isomorphic iff they differ by a
coboundary. One way is obvious, assume that B'(x,y) = B(z,y) + A([z,y]). Then
p:Loa—-Ldabyd:zdar—z® (a+ Ax)).

Indeed this is a vector space isomorphism:

Injective: @ (a+ A(z)) = y® (b+ A(y)) implies that x = y and so a + A(z) =
b+ A(x) which implies that a = b.

Surjective: @ —A(z) — x and 0@ a — a so it is surjective on a basis of L & a.
It is a Lie algebra isomorphism since

o([z,y]8) = ¢([x,y] ® B(x,y)) = [z, y] ® B(z,y) + A([z, y]) = [, 9]
It is clear that this map respects the commutative diagram below:

0O - a - L — L — 0

I e

0O - a - L — L — 0

Therefore if two maps differ by a 2-coboundary they yield isomorphic central
extensions and so the map from H'(L,a) —isomorphism classes of central exten-
sions of L by a is well defined and surjective. We will now see that it has an inverse.

Now, assume that two maps B,B’ : L A L — a are isomorphic via a map
¢: L®a— L@ asuch that the above commutes. Then by the commutativity of

the diagram ¢(0 @ a) = 0@ a for a € a and ¢p(z ©0) = 2 @ ¢(z) for all x € L,
¢ : L — a. In general then

dr®a)=dp(z@0)+ (0@a) =2 d(z) + 0B a =2 ($(z) +a)

Now, since ¢ is a Lie algebra homomorphism, by letting z := 2 @& 0 and a:=0&® a
by abuse of notation we get

¢([z,y]5) = ¢([z, Y|+ B(x,y)) = [z,y]+d([z, Y& B(z,y)) = [z, yl+é([z, y])+B(z, )
and
[6(2), 6(W)]p = [z + d(2),y + d(W)]p = [z, Y] = [2,9] + B'(z,y)

where the second equality on the last row comes from the fact that gZ;(x) is central.
But since ¢ is a Lie algebra homomorphism these must be equal so

[2,y] + é([z,9]) + Bz,y) = [z,9] + B'(z,y)
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and B'(z,y) = ¢([z,y]) + B(z,y) where ¢ : L — a. Therefore B and B’ differ
by a 2-coboundary and so there is a map sending isomorphism classes of central
extensions of L by a to H2(L, a). It is clear that this map is the inverse of the one
constructed above.

Therefore the central extensions L @ a are in one to one correspondence with
elements of H2(L, a).

(Exercise [4.0.1)) Let (p, q) :=Res< p,q > /z. Prove the following:

(1) (x(m), y(n)) = 5m+n,0(xa y)
(2) On Lg, (-,-) is a nondegenerate bilinear form.
(3) (+,-) is invariant under the bracket

Proof:
(1)

(z(n),y(m)) = RGSM = Res(z,y)z" T ! = (@, Y)0m+n,0

since Resz"t™~1 £ 0 iff n +m — 1 = —1 by definition.

(2) I p,g,r € Lg are of the form p = ... +p_12"" +po+prz + ...
(c1p + cor, q) = Res< apteng> Res< Yzt + et 3 g2t > =
) P B
Y <apiz' +arid' ga > > 2 (eipi +eariy gy) 2t
Res = Res
z z

= Res Z Z divjolcipi +coriyqj) | = <Z(Clpi + cari, qz>> =a Z(pi, q—i)tea Z(m q-i)

i g 7

=c1(p,q) + c2(p, q)
where the last equality can be gotten by reversing the beginning of the
argument. Linearity in the second term is the same computation. To see
that Lg is nondegenerate simply notice that for any p € Lg, if px # 0 for
some k then there exists a y such that (pg,y) # 0 by the nondegeneracy
of the inner product on g and

(p,y(=k)) = Z@fk,o(i%y) = (pr,y) #0

(3) Let’s check that (-,-) is invariant under the bracket:
([z(n), y(m)], w(k)) = ([z,y](n + m), w(k)) = nsrmro([z,yl, w) =

—Ontm+k,0(Ys [, 2]) = =(y(m), [x(n), 2(k)])
Therefore (-, -) is indeed an inner product on Lg.
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(Exercise [4.0.2) Show that (p,q) :=Res;—o <%= is a non degenerate, invariant
bilinear form on g.

Proof
First, (-, -) is bilinear since for a, b, e, f € g where a = p, + ¢, + d,, for p, € Lg,
cq € Ccand d, € Cd,
(a+b7e) = (pa +pb+ca+cb+da+dbae) =
(Pa +pbs€) + (ca + cp,€) + (da + db, €) = (pa + Db, Pe) + (Ca + €y €d) + (da + db, €c)
= (pa +pb7pe) + (Ca + Cb)ed + (da + db)ec =
(Paspe) + (casea) + (das ec) + (Po; pe) + (cb, €a) + (db, €c) =
(a,e) + (bse)
A similarly argument shows linearity in the second term. We now show that tt is
invariant with respect to brackets
Since c is central and so commutes with everything and d is only nontrivial on
Lg, we have, for e = w(k) + ¢+ d,
([z(n) + c+d,y(m) + c+ d],e) = ([z(n),y(m)] + [x(n), d] + [d, y(m)], )
— ([w(n), y(m)] + n(@, )t me — nz(n) + my(m), w(k) + ¢ + d)
— ([w(n), y(m)), w(k)) + 12, 1) + (—nz(n) + my(m), w(k))
= ([z(n), y(m)],w(k)) + n(, y)ontm — n(, w)0npr + MY, W)0ktm
Now, by a similar computation we see that
(y(m) + ¢+ d, foln) + e+ d, )
= (y(m), [z(m),w(k)]) + n(z, w)dpir + (y(m), —nz(n) + kw(k))
= (y(m)7 [x(m)» w(k)]) + TL(LC, w)(SnJrk + k(yv w)§m+k - n(y7 x)5m+n
Since (-, -) is invariant on z(n),y(m), w(k) we only need to check that
n(x7 y)(anrm —n(x, w)5n+k+m(yv w)5k+m = —(n(x, w)5n+k+k(yv w)6m+k_n(y7 x)§m+n)
But this is quiet simple since the only term for which this is no obvious is m(y, w)dg4m =

—k(y, w)dm+k; but both sides are 0 unless m = —k so the equality holds. Therefore
the killing form extends to a invariant bilinear form on g.

(Exercise [6.2.1)) Check that in g, eg, fo, ho form an sly triple.

Proof: Let eg = f(1), fo =e(—1) and hg = —h + ¢. Then
[eo, fo] = [f(1),e(=D)] = [f,e] + (f,e)e=—h+c=h
since [e, f] = h and (f,e) = 1 by the relations in 1.1 and 1.2. Similarly
[ho, fo] = [=h +¢,e(=1)] = —=[h,e(=1)] = —[h,€](0 — 1) = —2e(—1) = —2fo
and
lho,eo] = [=h +¢, f(1)] = =[h, f(1)] = —[h, fI(0+ 1) = 2/(1) = 2e0
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Therefore eg, fo, hg form an sl triple.

(Exercise [7.6.1)) Show that if {z,}sea is a basis of g then the lexicographically
ordered monomials in x, form a basis of Ug.

Proof: The lexicographically ordered monomials form a basis of the symmetric
algebra Sg by its definition and so form a basis of Gr(Ug) by PBW. First, it’s clear
that the LOM’s of degree 1 form a basis of Ug; since T'g; =GrUg; = Sg; = g and
GrUgy CUg; CTygs.

Now,by induction the LOM’s of degree n — 1 form a basis of Ug,,_1. But the
LOM’s of degree n form a basis of Gr(Ug), = Ug,/Ugn—1. But every element of
Ug, can be written as an element of Ug,,/Ug,—1 plus an element of Ug,_1 so if
the LOM’s of degree n form a basis of Ug,,/Ug,—1 and the LOM’s of degree n — 1
form a basis of Ug,,—; then the union of these two bases is a basis for Ug,. But
the union is simply the LOM’s of degree n. Since Ug = U,enUg,,, the union of all
such bases forms a basis of Ug, but this is simple the set of all LOM’s.

(Exercise [8.4.2) Show that a highest weight representation V' is in category &

Proof: First, V = Un_v is diagonal since for any basis element (ie lexicograph-
ically ordered monomial so element of the form fJ*f*), fi" f' - v we have

ho(fg" f1' - v) = lho, fol 5" 1 - v+ foho g~ 1 - v
= 2f0 v+ fohofg" T T v = o= =2m o+ [ ho ST
= =2mf i v =2nf f1 v+ f T ho v
= (=2m +2n 4 A(ho)) fo" [T - v = (A(ho) — mao(ho) — naa(ho)) f5" /1" - v

where ag = (—a, 1) and a1 = (a,0) as before. By practicality the same computa-
tion,

ha(fo" 1" - v) = 2m = 2n+ AX(h1)) fo" 1" - v = (A(h1) — mag(h1) — noa (ha)) fo" /1 v
Finally,
A(fg 1 - 0) = 1d, fol 5" M T - v+ fodfg v =
= — [ T v A+ fodf T T v == —mf v+ [T o
(AMd) =m) fg" fi' - v = (A(d) — mao(d) — nai(d)) fg" f1" v

So since f§" f{* - v is a basis of V of eigenvectors of g, g acts diagonally. Therefore
V satisfies the first condition of category &.
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Now, the above computations show that the weight spaces are all of the form
w=\—mag—na; and so A — p = mag + nay is a positive root and g < A for all
weights p of V. Therefore V satisfies the third condition of category &.

Finally, V satisfies the second condition of category & since each weight space
it = XA —mogy — na; is one dimensional, corresponding to f§" f{* - v. Therefore V is
in category 0.






CHAPTER 2
Quantum group U,sly

1. Gaussian integers
1.1. Let v be an indeterminate. Define for each n € Z:

vt ="
o= —— =
The following properties are easily verified:
(1) For n > 1 we have:
]y = 0" 0" T T
and [—n], = —[n],. Therefore, we have

[n], € Z[v, v
[n]v"():l =n

2, =v+ov!
(4) For m,n € Z, [m|, + [n], # [n + m],. However
v " [n], + 0" [m], = [n +m]y
PrOOF. Using the definition of the Gaussian integers we have:
m n vt =" v (" —vT"
v™"™"n], +v"[m], = v(—v*l )—|— 5}_071 )
P TN gt gy

1

= [n+m],
1.2.
[n]v' = [n]v[” - 1]v mv
1] -t
nq, [a—n]v'[n]v'

Lemma. For every a,n € N, a > n we have:

CUESAEEN
n " |, n—1 Y

and hence [ Z ] € Zv,v™ .

v

27
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PrOOF. We begin by computing the right-hand side :

RHS. =0v" { ¢ } +4 ol [ @ ]
n v

n—1
_ ’Uin [a]U! ,Uafn+1 [QLJ!
=Y el 0= 1l[a —n+ 1],
[a],!

= lia —n i ¢ et oo )

Y 1
= Tl —ng et

2. Definition of Ugsl;

Let k be a field and ¢ € k be a non-zero element such that ¢> # 1. Mainly we
will have the following examples in mind:
(1) k=Cand ge C\ {0,1,-1}.
(2) k=C(v) and g = v.

2.1. Definition. Ugsly is a unital associative algebra over k generated by
{K*',E, F} subject to the following relations:

(QG1)
KK '=K'K=1
(QG2)
KEK™ ! =¢E KFK~!'=¢72%F
(QG3)
K—-K!
EF|=———
B, £ q—q!

It will be convenient in computations to have the following notation:

an _ qfaKfl
q—q!
Note that we have the following reformulation of the relations of Ugsly:
(1) (QG3) is equivalent to EF — FE = [K;0].
(2) (QG2) is equivalent to :
[K;a)F = F[K;a — 2]
[K;alE = E[K;a+ 2

[K;a) =

Lemma. The following relations hold in Ugysly, for every r,s > 1:
EF® = F°E + [s],F* ' K;1 - 3]
FE"=E"F —[r],E" '[K;r — 1]
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PrOOF. We only prove the first of the two identities. The proof of the second
one is exactly similar. The proof is based on induction on s. For s = 1 the relation
EF = FE + [K;0] is precisely the relation (QG3). We proceed with the induction
step:

EF*t! = (EF)F?®
= (FE + [K;0))F°
= FEF® + [K;0]F*
= F(F*E + [s],F*7'[K; 1 — s]) + F*[K; —2s]
=T E 4+ F* ([s][K;1 — 8] + [K; —2s])
¢ *(slgg + 0 ) K + ¢*([slgg™" + ¢*) K" )
q—q*

_ Fs+1E+ F$ (
=FTE + [s +1],[K; 3]
where we have used the following two special cases of v™"[m], +v™[n], = [n+m],:
v m], + 0™ = [m+ 1],

v " +o[n], = [n+1],

3. PBW theorem
Proposition. The set of monomials S = {F*K"E" : r,s € N,n € Z} spans Ugsl,.

ProOOF. It suffices to prove that the set S is stable under left multiplication by
{K*, E,F}. We check this using the Lemma

1)
FFK"E" = F*T'K"E"
2)
Kil.FSKnET — q:FZSFSKnilES
®3)

EF°K"E" = ¢ *"F*K"E™ + [s],F* ' [K;1 — s]K"E"
O

Theorem. The set of monomials S = {F*K"E" : r,s € N,n € Z} is linearly
independent in Uysls.

PROOF. Let V = k[X,Y, Z*!] and define operators p(E), p(F), p(K*!) on V
by:

p(F).YSZ"X" =Yystiznxr
p(K:I:l)YsZan _ q2|22syszn:|:1Xr

p(E)YSZ"X" = q 2"V 7" X" + [s], Y5 Z; 1 — s]Z" X"
an _ Zfqua

where [Z;al :=
2zl q—q!
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Claim: The operators {p(E), p(F), p(K*")} satisfy the relations (QG1), (QG2)
and (QG3).

Assuming the claim, p extends to a representation of U,sly on V. Moreover we
have:

p(FPK"E™)1 =Y Z"X"

Therefore {F*K"E".1 : r,s € Nyn € Z} C V is a linearly independent set.
This proves that the set S is linearly independent and we are done.

Proof of the claim: We verify the relations directly:
(QG1) p(K)p(K~) = p(K~")p(K) = 1 is clear.
(QG2) We prove the relation KEK ! = ¢?E. The proof for the case of F is
absolutely similar.
p(E)(p(E)(p(K~1)(Y*Z2" X)) = ¢** p(K)p(E)(Y*Z" ' X")
— ¢*p(K) (q72(n71)Yszn71Xr+1 4 [s]qu’l[Z; 1— S}anXr)
=q Y Z2n X 4 Plsl Y 251 - s)Zn X7
=¢’p(B)(Y°Z"X")
(QG3)
[o(E), p(F)Y*Z" X" = p(E)(p(F)(Y*Z"X")) — p(F)(p(E)(Y* 2" X"))
=p(E)(Y ' Z"X") — p(F) (¢ 'Y 2" X" + [s],Y* 71 Z;1 — 5] 2" X7)
=g Y 2T 4 [s +1],Y0[Z; -8 27 X"
e SRAD G P S VS I VA ¢
=Y*([s+1]4[Z;—s] — [s]4[Z;1 —s]) Z" X"

— Ys (q_2SZ —QQEZ_I) ZnXT
q—dq
_ ([(_[(_1> YSznxT
q—q!

4. Representation theory of Ugsl;

For notational convenience we set U = U,sl in this section. We further assume
that ¢ is not a root of unity.

4.1.

Proposition. If V is a finite-dimensional representation of U then there exist
r,s > 0 such that E" = F* =0 on V.
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PRrROOF. We begin by writing the Jordan decomposition of K:
V= @ Vv
p(z)

where

e p(z) ranges over irreducible polynomials in k[z].

o Vi = {v eV :pK)" = 0}. Since K is invertible this in particular
yields: Vi) # 0= p(0) # 0.

e Vi) = Vip) if, and only if p and p’ are proportional.

Using KF = ¢ 2FK and hence p(K)F = Fp(q %K), we get:
F = Vipay) = Vip(a2e))

Moreover, we have Vip(gra)) = Vip(ge)) if, and only if p(¢"x) = p(¢°z) (since p
has non-zero constant term) which implies ¢"" = ¢*" (n = degree of p). This implies
r = s since ¢ is not a root of unity. Since V is a finite-dimensional representation
we get that F' acts nilpotently. The proof for E is absolutely similar. (I

4.2.

Proposition. Assume that char(k) # 2. If V is a finite-dimensional representa-
tion of U then K acts semisimply on V with eigenvalues £q* (a € 7).

PROOF. From previous proposition, we know that F* = 0 on V, for some s > 0.

Claim 1:

[

o
(K—-¢)(K+¢)=0

j=1l-—s

Claim 2: Define

r—1

hei= ] [Kir—s+3)

j=1-—r

Then we have F*~"h,. = 0 for every 0 < r < s.

Note that the second claim for r = s yields the first claim, which directly
implies the assertion of the proposition. Thus we are reduced to proving the second
claim, for which we shall need the following

Lemma.

r

: L [ ; L [i]g! F*~ h; B

E'F® = Z

=0

min(r,s)
K

where we define:
hi = H[K;i— (r+s)+7]

j=1
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Set a; = { : } [ j } [i]4!. Assuming the statement of this lemma, we have
q q

(for r < s):
r—1
0=E"F*[[K;r - s+
j=1
T N r—1
= ZaiFSﬂhiE’ul H[K;r —s+7]
i=0 j=1
" r—1 r—1 " r—1
=a,F"h, H[K;r —s+7] —|—ZaiFs_ihiEr_i H[K;r— s+ j]
=i i=0 Jj=1
r—1 r—1
=a,F e+ Y F*7h [[[Ki+5—r—s]E™
i=0 j=1

Now the proof of the second claim follows by induction on r.
Proof of the lemma: Let us begin by writing the straightening relation for unknown
elements h;(r, s) € U°:
min(r,s)
(4.1) E'F*= Y F*hi(r,s)E"
i=0
Here U° is the subalgebra generated by K*'. Let o be the automorphism of 2/°
sending K to ¢ 2K. Then we have:
[ hQ(O,T) = ho(’/‘, 0) =1
e h;(r,s) = hi(s,r). To prove this apply the anti-automorphism w, defined
by w(F) = E, w(E) = F and w(K) = K to equation (4.1
Using Lemma [2.1] one can write down the following recursive system, which
together with the observations above, determines the elements h;(r, s):

e For every 0 <i <r,r < s we have:

(4.2) hi(r,s +1) =chi(r,s) + [r —i+ 1)ghi—1(r, s)[K;i — 7]
e For every r < s and 0 <1i¢ < r+ 1 we have:
(4.3) hi(r+1,s) = ohi(r,s) + [s —i + 1]ghi—1(r, s)[K; i — 3]

with the convention that h_;(r,s) = hjtminrs(r,s) = 0 for every j > 1.
Thus it remains to check that h;(r, s) given by

newo =[] 3] BT =0

j=1
satisfies this system. The base case ho(0,7) = 1 and symmetry in 7, s is clear. We

prove (4.2)).

) _ o ) _ [r]q![s}q!
ohi(r,s) + [r—i+1],[K;i—r]hi—1(r,s) =

[r—]q![s — @+ 1]4[d]4!
% i—1
[s—i+ 1y [[IK:i+i—r—s—2]+ [ilg[Ksi—r] [J[Ksi+j—r—s—1]

j=1 j=1
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_ Irlq'[s1! o [T 15 i+i—r—s—1] (s i + U[K;i — 7 — s — 1] + [, )
q- j=1

[r—i]q![s — i+ 1],!
One can directly verify that
[s—i+1g[i—r—s—1]+[i][K;i—71] =[s+ 1]4[K;2i —r — s — 1]

which implies:

ohi(r,s) + [r — i+ 1]y [K:i — rlhs1(r,s) = Ir]q!lsld! [s+ 1] ]_i‘[[K'i+jfrfsfl}
e . TR =M s — i+ 1] S
r s+1 . : L
S F R o (CIERES R
q q j=1
:hi(T,S—Fl)
The proof of (4.3]) is similar and hence omitted. O

4.3. From now onwards, we assume that ¢ is not a root of unity and char(k) #

Using Proposition we have that every finite-dimensional /—module M de-

composes as:
M = EB M,

AEkX
where My = {m € M : Km = Am}. Using finite dimensionality of M, we know
that there exists A € k* such that My # 0 and Mgy = 0. If v € M) is any
non-zero vector, then Fv € M2y = 0. Hence v is a highest—weight vector. Thus
the submodule M’ of M generated by v is a highest-weight module.

Corollary. FEvery irreducible finite—dimensional U —module is a highest-weight mod-
ule for a unique highest—weight \.

The uniqueness follows from the fact that g is not a root of unity.

4.4. Highest weight modules. For A € k* there exists a unique Verma
module M (A) defined by:

M) =U/UE+ UK — X)
Let us denote by mo € M(\) the coset of 1 € U. Then a basis of M()\) can be
obtained as: 4
{m; == F'mg :i >0}
Moreover the action of & on M () can be written explicitly as:
Km; = )\q_zimi
Fm,; = mi_H
qlfi)\ _ qz?l)\fl
q—q!
Proposition. (1) M(X\) has a unique mazimal proper submodule M(\)'.
(2) If A # £q™ for any n € N, then M (X) is irreducible.
(3) If A = £q™ for some n € N, then M(\)' = Span{m; : i > n+1}.

Em,; = [’L]q my;—1
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PROOF. (1) is clear. For (2) assume that M(A) is not irreducible, and take
M’ to be a proper submodule. Then there exists ¢ > 0 such that m; € M’ but
m;_1 & M'. Hence Em; = 0, which implies:

ql—i)\ _ qi—l)\—l

Emi = [Z}q q— q_l mi—1 = 0
Therefore, A? = ¢>(~1) which implies (2). (3) follows from a similar computation.
O
Corollary. (1) For every X\ € k™ there exists a unique irreducible highest—

weight module L(X) := M(X)/M(X) of highest-weight .
(2) L(\) is finite-dimensional if, and only if A € {£¢™ : n € N}.
(3) L(X) = L(p) if, and only if X = p.

4.5. Casimir operator. Define:

qK + q—lK—l
4.4 C=FE+————
(44 (g—q71)?
Using FE = EF — [K;0] we can rewrite this definition as:

—1 —1

g K +gK
4.5 C=FEF+ —F——-—5—
9 (¢—q7')?
Proposition. (1) C is a central element of U.

(2) IfV is a highest-weight module of highest—weight \ then C acts by a scalar
on 'V, given by:
g g A
(g—q1)?
2

(3) Claryy = Clyy if, and only if X\ = or A= p~tq~2.

C|V ]dV

PRrROOF. (1) It is clear that C commutes with K. We check the relation CE =
EC:

qK—i—q_lK_l
(q—q71)2

¢ 'K 4+ gK™!

(q—q1)2

EC=FEFE+E

=FEFE+ E
=CFE
The proof of FC = C'F' is same.

(2): Let vy € V be a highest—weight vector of highest—weight A. Then

K —1K—1
C’UA = (FE+Hq”) U
(g—q71)
gA+q At
B CEY s

Using the fact that C' is central and V is generated by vy we obtain the assertion
of (2). (3) is clear from (2). O
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4.6.

Theorem. Let M be a finite-dimensional U-module. Then M is completely re-
ducible.

PROOF. We begin by writing the Jordan decomposition of C|s:
M =P M)
!

where

e f is an irreducible polynomial in k[z].
o My :={meM: f(C)"m =0 for n >> 0}

Since C'is central, we get that each My is a submodule of M. Thus we may
assume that M = My for some f € k[z] irreducible polynomial.

Now let us consider a composition series of M:

O=MycM;C---CM,=M

where each M;/M;_1 = L()\;) is a simple Y/—module. Hence C' acts on the quotient
M;/M;_; by the scalar:

i+ g A
Claiynmiy = WIdMi/MH
g+ g A
Let ¢; = W Then = — ¢; divides f(z) for each i. Since f is irre-

ducible, we get that f(z) =z — ¢; and ¢; = ¢; for each 1, j.

In particular this implies that A; = A; (since the other case: \; = q’z)\j con-
tradicts the fact that M is finite-dimensional and hence A € £¢").

Thus we have proved that all composition factors of M are isomorphic to L(A)
for some A of the form +¢" (n € N).

Now let M = @
get:

pekx M,, be the weight space decomposition of M. Then we

dim(M) = rdim(L(A)) dim(M,) = rdim(L()),)

Choose a basis {my,--- ,m,} of M. Let M’ C M be the submodule generated
by {m;:1<i<r}:

M = ZT:Z/[mi
i=1

We claim that M’ = M and M’ = @ Um,. The first assertion follows from the
fact that (M/M’), = 0 and the only composition factors of M /M’ are isomorphic
to L(A). The fact that the sum is direct is an easy consequence of the dimension
count. The theorem is proved. ([
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5. Hopf algebra structure

5.1. Motivation. Let A be a unital associative algebra.
e (Coproduct) For V,WW A-modules, we have an A-module structure on
V @ W if and only if there exists an algebra homomorphism:
A:A—-ARA

e (Coassociativity) The natural vector space isomorphism (U ® V) @ W =
U® (VW) is an A-module isomorphism if and only if

(A®1oA=(1®A)cA

e (Counit) The one dimensional vector space k has an A-module structure
(trivial A-module) if and only if we have an algebra homomorphism e :
A— k.

e The natural isomorphisms £k ® V = V 2 V ® k are then A—module iso-
morphisms if and only if

(e®1l)ocA=1=(1®e)o A

5.2. Bialgebras. A bialgebra over k is a quintuple (4, .,1, A, ¢) such that:

(1) (A4,.,1) is a unital associative algebra.
(2) A: A— A® A is an algebra homomorphism such that

(A®1)cA=(1®A)ocA
(3) €: A — k is an algebra homomorphism such that
(e®l)oA=1=(1®¢e)o A

Example. (1) A =U(g) for a Lie algebra g has the following bialgebra struc-
ture:
Alz)=z1+1®x
e(x) =0
for every z € g[z, 27 1].

(2) Let T’ be a finite group and A = kI' be the group algebra of I'. The
bialgebra structure on A is given by:

Alg)=g®@g
e(g) =1

for every g € T'.
(3) Let G be an algebraic group over k and A = k[G] be its coordinate ring.
Then A has the following bialgebra structure:

A(f)(z,y) = flzy)
e(f) =11

for every f € A, x,y € G.
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5.3. Dual modules. If V is an A-module, then in order to have an A—module
structure on V* we need an algebra anti-homomorphism S : A — A (i.e, S(ab) =
S(b)S(a)) called antipode. Given such S, we can define an action of A on V* as
follows:

forp e V¥, v eV and a € A.

Example. (1) A = U(g): the antipode is given by S(z) = —z for every
x € g.
(2) A = kI: the antipode is given by S(g) = g~! for every g € T.
(3) A = Kk[G]: the antipode is given by S(f)(x) = f(z~1) for every f € A and
z € G.
5.4. Hopf algebra. A Hopf algebra over k is a hextuple (A, .,1, A, e,S) where:

(1) (A,.,1,A ¢) is a bialgebra.
(2) S: A— Ais an algebra anti-homomorphism.
(3) The following condition holds:

mo(S®1)ocA=1le=mo(l®S)oA

Axiom (3) can be interpreted as follows: let V' be an A-module. It is natural to
require that the following natural homomorphism of vector spaces is an A-module
homomorphism:

tr: VeV —k

which is equivalent to the assertion that for every a € A, ¢ € V* and v € V we
have:

tr(a.(¢ ©®v)) = e(a)¢(v)

[Sweedler’s notation] For a € A we write (suppressing the subscript and sum-
mation sign): A(a) =d' ® a”.

tr(a(¢p @v)) = tr(a’¢ @ a”v)
= ¢(S(a’)a"v)
=¢((mo(S®1)oA)a)v)
= e(a)p(v)

Similarly we can interpret the second part of axiom (3) as the requirement that
the following linear map is an A-module homomorphism:

k— VeV EndV)

which maps 1 € k to Idy = u; @ u’ (here {u;} is a basis of V and {u'} is the dual
basis of V*).
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a.(u; @ u') = a'u; ® a"u
=a'u; @ u'S(a")
= a'u; @ u'(S(a"u;))u?
= a'u'(S(a")uj)u; @ v
= (a/S(a")u;) @ v = e(a)u; @ v

Remark. (1) S? # 1 in general. However in the examples above S? = 1.
(2) eocS=e.
(3) AoS=(S®S)o A%,

5.5. U as a Hopf algebra.

Theorem. (1) The following assignment extends to a unique algebra homo-
morphism A :U - U QU:
AK)=K®K

A(E)=E®1+KQ®E
AF)=FK '+1®F

(2) The following assignment extends to a unique algebra homomorphism € :
U-—k

e(K)=1
e(E)=¢(F)=0

(3) The antipode S is the unique algebra anti—homomorphism S : U — U such
that mo (S®1)oA=1le=mo(1®S)oA, and is given by:

S(K)=K™*
S(E)=-K'E S(F) = -FK
(4) We have S?*(a) = K~ 'aK for every a € U.

PRrROOF. (1) We check that {A(K), A(E), A(F)} satisfy the defining relations
of U:

(QG1) is clear.
(QG2) is proved only for the case of E:

AK)A(B) A(KTY)Y=(K@K)(E®1+K@E) (K '@ K™
=KEK '®1+ K@ KEK™!
= ¢*A(E)
(QG3)
AE),A(F)|=[E®1+K®EFK '+1®F]
=[E,FIeK '+ K®|[E,F|l+ KFR EK ' - FK® K 'E

1
= (K@K '-K'9K'+KoK-K®K ')
q

K- K
ZA(1>
q—q
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(2) We again have to check that the defining relations of U are satisfied by
{eK =1,¢(F) =0,eF =0} in k, which is clear.

(3) We begin by proving uniqueness. Since A(K) = K ® K and e(K) =1 we
get:
1=¢(K)=S(K)K = S(K)=K*
Next we use the definition of A(E) and e(E) = 0:
0=¢(E)=8(E)1+K'E=S[E)=-K'E

The computation of S(F) is similar.

To prove that S extends to an algebra anti-homomorphism, we need to check
that {S(E), S(F'),S(K)} satisfy the relations of U in U°P:

(QG1) is again clear.
(QG2) is proved for the case of E:

S(KEK™') = S(K Y)S(E)S(K)
=K(-K'E)K~!
=¢°S(E)

(QG3)
S(E, F]) = [S(F),S(E)]
=FKK 'E—- K 'EFK
B K'-K
q—q!
K- K!
=5 <_1>
q9—4q
(4) Since S is algebra anti-homomorphism, S? is an algebra homomorphism.

Thus to prove that S? = Ad(K '), we only need to check it on the set of generators
{K, E, F} of U, which follows directly from (3). O

6. Quasi—triangular structure

6.1. Almost cocommutative bialgebras. We say a bialgebra A is cocom-
mutative if

A(a) = A*'(a) for every a € A

Here A?' = (12)o A: A® A — A® A. Note that if A is cocommutative, then for
any two A—modules, V and W, the natural flip operator V@ W — W ® V is an
A-module homomorphism.

Definition. A bialgebra A is said to be almost cocommutative, if there exists an
invertible element R € A®? such that

A?'(a) = RA(a)R™! for every a € A



40 2. QUANTUM GROUP Ugsla

Lemma. Let (A, R) be an almost cocommutative bialgebra. Then for any two A-
modules, V and W

RV :=(12)oR: VW -WaV
18 an A—-module homomorphism

PROOF. We need to prove that RY (a.(v@w)) = a.(RY(v®@w)) for every v € V,
w € W and a € A. This is equivalent to the following :

RY o A(a) = A(a)RY
<= RA(a) = (12)A(a)(12)R
< RA(a) = A" (a)R
Here we have used the fact that A2?!(a)(w ® v) = (12) o A(a) o (12)(v ® w). O

Note that unlike the case of cocommutative bialgebras, the square of “flip” is
not necessarily identity:

(RV)? = (12)R(12)R = R*'R # 1

6.2. Braid diagrams. To better understand the motivation behind many of
the axioms that will follow, it is instructive to represent R by the following braid:

M N

(6.1)

N M
As a general principle the above diagram represents the element RY of Hom 4 (M ®
N, N ® M). We will follow this rule closely, whereby any braid diagram b connect-
ing (1,2,--- ,n) to (w(1),7(2),---m(n)) (for some m € &,,) represents an A-module
homomorphism:

b(My,---,Myp) € Homa(M; ® -+ @ Mp, Mr(1) ® -+ - @ Mr(y))

obtained by replacing each subdiagram of the form (6.1)) by R, and a subdiagram of
the form (6.1) with under—crossing by (R")~!. For instance the following diagram
represents an A—module homomorphism M; ® My ® M3 — M3 ® M, ® My given
by: RX417M3 o R\A//[27M3.

/

Let B,, denote the group of braids on n strands (Artin’s braid group). It is well
known that B, is generated by T1,--- ,T,_1 subject to the following relations:

T,T, = T;T; if |i — j| > 1
TTi Ty =T TiTipq for 1 <i<n—2
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Here T; is the following braid:
1 e d—=1 4 i+l i4+2 - n

1 o =1 i i+l i+2 - om

The relation T;7;11T; = T;411;T;11 can be pictorially seen as the following

equality of braids:
( >
/

6.3. Quantum Yang—Baxter equation. Let (A, R) be an almost cocomu-
tative bialgebra and let V' be an A—module.

Proposition. The assignment T; — RXH_I extends to a representation of By, on
Ven if and only if

Ri2R13R23 = RosRi3Rio
holds.

PRrROOF. The relation T;T; = T;T; for |i—j| > 1 is clear. For the braid relations

it suffices to consider the case of n = 3 and prove

R1V2R§/3R\1/2 = R¥3RY2R¥3
We begin by simplifying the left—hand side :

L.H.S. = (12)R12(23) R23(12) R12

Similarly the right-hand side is same as (23)(12)(23)R12R13R23 and we are done.
O

6.4. Quasi—triangular Hopf algebras. Let (A4, R) be an almost cocommu-
tative Hopf algebra. We say A is quasi—triangular if the following (hexagon) axioms
hold:

(QT1) A®1(R) = Ri3Ro3
(QT2) 1® A(R) = Ri3R12

The origin of these axioms can be explained using the braid diagrams:
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(QT1) Let V,W,U be three A-modules. Consider the following equality of braids:

v w U |4 w U

/ _

U Vv w U |4 w
This implies the following equation for morphisms VoW U - UV @ W:
RYewu = (RV.y ®1lw) o (lv ® Ry
which is equivalent to:
(123)(A @ 1)(R) = (12)R12(23) Ras

This equation is same as the axiom (QT1).

(QT2) can be similarly explained by the equality of the following braids:

6.5.

Proposition. If (A, R) is a quasi-triangular Hopf algebra, then the quantum Yang—
Bazter equation holds for R.

PROOF.
RiaRi3Re3 = Ri2(A ® 1)(R)
— (A% @ 1)(R) Ry
= RogRi13R12
[l
6.6.

Proposition. Let (A, R) be a quasi—triangular Hopf algebra. Then we have the
following:

(1)
ERDNR)=101=(1®¢e)(R)
(2)
(S®1)(R) =R
(3)

(S®S)(R)=R
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PROOF. (1): apply (e®1®1) to both sides of the equation (A®1)(R) = Ri3Ra3,
and use (¢ ® 1)(A(a)) = 1®a to get:
R23 = (E Q1 1)(R13>R23
which implies that (¢ ® 1)(R) = 1. The proof of the other equation is similar.
(2): Apply mi20(S®1®1) to both sides of the equation (A®1)(R) = R13Ra;3
and use the axiom (mo (S® 1) o A)(a) = e(a) to get:
(e®@1)(R)=(S®1)(R).R
which together with (1) implies that (S ® 1)(R) = R~

(3): apply mag o (S ® S ® 1) to the equation (1 ® A)(R) = Ri3R12 to get:
(I®e)(R)=(S®S)(R)(S®1)(R)

which proves (3) using (1) and (2). O
Remark. The category of modules over A, for a quasi—triangular Hopf algebra A
is a braided tensor category.

6.7. R—matrix for Y. Recall that the coproduct A : U — U @ U is given by:

AK)=K®K
AE)=E®1+K®FE
AF)=F®K'+1®F

Let 7 be an algebra anti-automorphism of U defined by 7(K) = K~! and 7(F) = E,
T(F) = F. We can twist A by 7 to define another coproduct:

AT :=(t®T)oAoT
Explicitly, A7 is given by:
ATK)=K®K
AT(E)=E®1+K '®@F
AT(F)=FoK+1@F
We aim at constructing © such that

(6.3) A(u)® = ©A (u) for every u € U
Drinfeld’s ansatz: We look for © of the following form:

0= ZanF” ® E™ where a,, € k

n>0

Thus we try to solve for a, € k so that © =3 . a,F" @ E" satisfies (6.3).
It is clear that the equation (6.3]) holds for u = K without any constraints on al,s.
Let us begin by considering (6.3)) for u = E:

(E®1)0-0(E®1)=—-(K®E)O+O(K '®F)
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LHS. =) anE,F"|@E"
—Zan 1, F" K1 —n]@ E™
RHS. =-) an(KF" - F"K~ ') @ E"™

Kq"—Kq"
= anlg- q—l)q—nqif @ Ent1
q-q
== ang (g ¢ F[K; —n] @ B

Therefore we get the following constraint on the coefficients:

_a™e—a7Y)
py1 = —Opn——F =7
[n+ 1]
which has the unique solution given by:
_ 4,—1\n
an = (—1)" (g—q ) —n(n=1)/24,

nlq!
Next let us consider the equation for u = F:
O1®F) -1 F)B0=(FK )0 -0(F®K)
LHS. =) a,F" ®[E",F]
= Z[n]qanF" @ E" Y K;n—1]
RHS. =Y a,F""' @ (K'E" — E"K)
== ag (g —¢ " @ E"[K;n)
and we obtain the same recurrence relation for a},s. Hence we have proved:

Proposition.
—1\n
Q= n —nn 1)/2( ) @ E™
Z [n}q! ¥
n>0
is the unique solution of (6.3] m

Remark. (1) Let us define {n} := q so that we have [n], = ¢~V {n}.
In this notation © can be rewrltten as:
~1
na—a )"
0= ————F"QFE"
D TR
n>0

or more compactly © = exp,(—(q — ¢ )F ® E), where we define the
g—exponential as:
exp, (
= o
(2) © defined above does not lie in u ® U. However for any two finite—
dimensional d—modules M, N, © can be evaluated to give a well-defined
element Oy v € End(M ® N), which has the following properties:
(a) ©n,n preserves weight spaces of M ® N.
(b) O, N on a given weight space is unipotent (and hence invertible).



6. QUASI-TRIANGULAR STRUCTURE 45

6.8. Consider the following subset of £*:
A:={xq":neZ}Ck*

We have proved that for every finite-dimensional representation of U, say M, we
have the weight space decomposition:

M = @M,\
AEA

Consider a function f : A x A — k* and extend it to an operator f: M®N —
M ® N by:

Flanen, = F(A p).Id

Proposition. Let ©f := 0o f Then ©7 satisfies

(6.4) A(u) 0 ©F = 6 0 A% (u)
for every uw € U if, and only if
(6.5) F@Xp) =p ) fOLg ) = A7 )

PROOF. Since both © and fpreserve the weight space decomposition, the equa-
tion (6.4) holds for any f. It remains to check (6.4) for u = E, F'. Let us begin by

rewriting ((6.4)):
A™(u)o f = foA®(u)
For u = F, we simplify this equation on My ® N, as:
LHS. = A7(E) o flaen,
=fAW(E®1+E @ E)laeon,
=fu)(E@1+A 1 eE)
RH.S. = f o A2 (E) i en,
=fo(1®E+E®K)|men,
= f @)1 @ B) + uf(@Xp)(E@1)
which finishes the proof. O
Remark. As a corollary we obtain an intertwiner M @ N — N ® M for finite—
dimensional modules M, N of U:

©0(12)
MQN-——-—>NQQM

for any solution f of (6.5]).

6.9. QYBE. The aim of this section is to prove that the quantum Yang—
Baxter equation holds for the intertwiner (12)0©7f. We will begin by some prepara-
tory results:

Lemma. (1)

A(En) _ Z |: Z :| qr(n—r)En—rKr ® E"
q
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A(Fn) _ Z |: ,'Z :| qr(nfr)Fr QF v TKT
r=0 q

n—+m

nm
nQm = g |: n

:| an-i—m
q
Define © and ©" as:

GE:E:anF”®}W%aE”

n>0

@/l — ZanFn®K_n®En
n>0

J?120@13 :@/Oflz
faz 0013 =0" 0 fog
f12/13023 = O3 f12f13

f23/13012 = O12f23f13
PROOF.

(1) The proof is by induction on n. For n = 1 we have by definition:
A(EY=E®1+K®EFE

Assume the assertion of (1) of Lemma for n > 1. Then we get:

A(E™) = (E® 14K & ) (Z e[ e E)
r=0 q
n+1
_ Z <qr(n—r) |: n ] + q(r+1)(n+1—r) [ ﬁl :| ) prtl-rgr QE"
r=0 " q " q
n+1
— qu(n+1—r) [ n+1 :| Entl-T T ® E"
r=0 " q
(2) the proof is same as that of (1).
3)
n(n—4+m(m-1) 1 1
AnQm = (—1)n+m(q - q_l)n+mq_ 2 Tt
[n]q! [m]q!
n+m _ (nfm)(ntm—1) _ 1
_ nm -1 n+m e o 1\n+m
n Lq (=1)"""q (g—q ) !
_ oam | MTM a
=q n . n-+m
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(4) We compute both sides of (4) on tensor product of weight spaces of weights
A, i, v. For each n > 0 we have:

fizo (F" @ 1@ E")wyememy = (g "\ p)(F" @ 1@ E™)
— 1O ) (F @16 B
=(F"®K"®E")o ﬂM,\®M[L®M{,’
where we have used the identity (6.5]).
(5) the proof is same as that of (4).
(6) Again we compute the operator fi2f13023 on a tensor product of weight
spaces My ® M}, @ M,/
fzfis(l@ F @ E"amemiemy = FON ¢ ") f(N ¢#"v) (1@ F* © E™)
=fAwfrv)de "o E")
= (1@ F" @ E™) fisfisl ooy
(7) the proof is same as that of (6).

(]
Proposition. (1)
(A®1)0 = (120)0"
(2)
(1A =0Ox1)0
PRrOOF. We prove (1) only.
(A@1)0=> a,A(F")® E"
_ - r(n—r) n T n—r gs—r n
_Zan<2a [T]F@)F K >®E
n>0 r=0 q
_ Z anqr(n—r) |: :’ :| (1 @ F" " ® En—r)(Fr QK T® Er)
n>0 q
0<r<n
= > an,a,(1@F""QE")(FT® K" ®E")
n>0
0<r<n
=(1®0)0"”
(]

Theorem.
@{2@{3953 = 9539{3@{2

PRrOOF. Using (4)—(7) of Lemma the above equation can be shown to be
equivalent to:
0120’23 = 0230”015
Using (2) of Proposition the left—hand side of this equation is simplified as:
@12@/@23 = (1 X A)@@Q:}
= @23(1 & AT)@
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Thus we are reduced to proving that (1Q A7)0 = ©"”015 which follows directly
from (2) of Proposition and definition of 7. O

6.10. Hexagon axioms. Let oy v : M @ N — N ® M be the commutativity
constraint given by ©7 o (12). In order to establish the hexagon axioms for this
intertwiner we will need the following constraints on f:

(6.6) fu,v) = FA ) [ v)  fO ) = fFO w) f(Av)
Proposition. The following diagrams commute if and only if holds for f.

Xt M M

M®MI®M// M//®M®M/
1®QM/’M//
MeoM' @M

Qpnr M @M

M®M/®Ml/ M/®MII®M

M/®M®M//

ProOOF. We will only focus on the first of the two diagrams. The top arrow is
given by:

(1@ A)(Oo f)o(123)
which on a tensor product of weight spaces My ® M, ® M,/ is given by:
(1®A)(O)f (v, An)(123)
Now we compute the other homomorphism:
O12f12(12)O23 f23(23) = O12 f12013 f13(123)
Using the commutation relation (4) of Lemma [6.9 we get

= 0120/ f12f15(123)
which evaluated on a tensor product My®M,,®M,) is given by ©120" f (v, \) f (v, 11)(123).
Comparing the two computations the assertion follows by Proposition [6.9] O

6.11. We have proved that the category of finite-dimensional representations
of U has a braided tensor structure with commutativity constraint given by ©70(12)

provided we can find f satisfying (6.5 and . Using (6.5) iteratively, we have
the following constraints on f:

flerq®™, e2¢*™) = el"e5q """ f (€1, €2)
flerg®™ ™ eaq®™) = el egq BT f(erg, €)
fle1d®, e2¢”™ 1) = €'y g "™ f(eq, €2q)
Fleag® ! g™ ) = el'epq ™" f(gey, ges)

Thus we can freely choose any values for f(e;q?, e2q®) for €1, €2 € {£1} and a,b €
{0,1} and get a solution of (6.5)) using the above relations.
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However we can only solve if ¢ admits a square-root in k. To see this, we
observe that implies that f(¢%, ¢*) = f(¢,q)?*. Thus we have

fla.¢*)=q"" (by (65))
= f(g,9)* (by (6.6))

Hence f(q,q)~?! is a square-root of q.

Even with the assumption that ¢ admits a square-root, a solution f of (6.5)
and cannot be found for the full A:

f(_17 1)2 = f(_l? 1) =1
f(=1,¢%) = f(-1,9)* = f(1,¢) =1
=—f(-1,-1)=-1
which is a contradiction. Let us define A := ¢%. The previous arguments imply

that we can solve for f restricted to A, but not for A. This prompts the following

Definition. A finite-dimensional representation V' of U is said to be of type I (or
IT respectively) if the set of weights of V, denoted by P(V) is a subset of A (or —A
respectively).

The category of type I representations of U forms a braided tensor category.
However the category of type II representations only forms a module category over
the category of type I representations.






CHAPTER 3
Quantum affine sly: Ugsly

1. Two Presentations of U,sl,

Recall that sly as a central extension of sly [t,t~1] was presented on {e;, f;, hi }i—o
with

(1.1) e1=et’ fi=fatd hi=hat°
(1.2) co=f@t fo=ext™  hi=-hat'+c

with the relations

(1.3) [hi hj] =0
(1.4) [hi, €] = aij [hi, f3] = —aij f;
(1.5) lei, fi] = 6ij
(1.6) ad(e;)'” ”eg—ad( i)’e; =0
(1.7) ad(£i)1= f; = ad(f3)?f; = 0
where
A= (ay) = <_22 —22)
and
wa)” = (60) = )" = 3 () (o) )41

k=0

1.1. Definition. qu:[g is the associated algebra over k with generators Xii,
KijE for ¢+ = 0,1 and the relations

(1.8) KK '=K 'K =1
(1.9) KoKy = K\ KoK XK = g™/ X
K, — K1
+ -1 _ 1 7
(1.10) (XX )= 6ij$

+\3 £ +\2 v+ vE + v+ +\2 + +33
(1.11) (X7)° X5 = BIXT) XX + BIX X (X)) — X5 (X)° =
The above algebra is a Hopf Algebra with coproduct
(1.12) AK)=K;®K;
AXN =X0oK +12 X}
AX) =X, @1+ K "0 X,

51
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and antipode

(1.13) S(K;) = K.t

S(XF) = XK
S(Xi) =K@ X;
In addition we have the following presentation due to Drinfeld:

1.2. Theorem. Uqg[g is homomorphic to the associative algebra over C with
generators xif for k € Z, hy, for k € Z*, K*' and central elements C*'(= ¢) such
that

(QR 1)
CCl'=C'"C=KK'=K'K=1
(QR 2) . .
1 ck—C-

hi, he] = 6 _p=[2K]————

[kv Z] k, @k_[ ] q_q_l
(QR 3)

Khy, = hi K

To make sense of the above we can think of hy — h(k) = h ® t* as
¢ — 1. To make sense of (QR 2) recall that in sly we have [h(k), h(£)] =
[, hl(k + £) + kdk400(h, h)c = 2kdg4+s0c. Then under the degeneration
q—1

k —k ke —kc
¢ —C:1 Y il R
q—q q—q
Note however that K = ¢"© is exponentiated while hy, is not.

(QR 4)

+ -1 +2 +
Koy K =q a2

+ _ - —
Where 2 o e(k) and x5 - f(k).

(QR 4)
+ 4+ 42 4+ 4+ 42 4+ 4 + 4+
L1ty =4 Ty Tpg =§ Ty — Ty Ty

This corresponds to the fact that for ¢ = 1, [z (k + 1),2T(¢)] =
(27 (k), 2™ (¢ + 1)].

(QR 5)
1

—4q

[z, 2, ] = p— (C*4hpgr — i)
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where
Z Yrpuf = Kexp | (¢ —q¢7 1) Z hyu®
k>0 E>1
Y @b =FKexp [ —(g— ¢ ") e
k>0 k>1

Remark: We note here that there is another system of generators
and relations that can be nested in these relations. Namely,(u)K 1 =
exp((¢ — ¢~ ')h* (u) implies that h* (u) = log(¥(u)K~1) /(¢ — ¢ 7).
ProOOF. We need to show that the algebra we have defined above is indeed
homomorphic to Uq§[22. But we can simply give the homomorphism explicitly as:

Ky— CK™!, K — K X o
Xar — fo_l X, — C_leJ_rl

The first three maps are obvious, the last two less so but it can be shown that all
together they define an isomorphism of algebras. ([

Remark: Vi € Z there is a copy of the Uysly contained in qu:[g given by
E vz F C 2, K w— KC'

This can be checked by looking at the classical case: [e(n), f(—n)] = h(0) +
n(e, f)e = h(0) + nc and using then checking the relation under the image of the
morphism:

; C%hg — @ C'K—-CK™!
e = -
q9—9q )

2. Finite Dimensional Representations of U,sl,

Let H be the subalgebra of UqﬁA[Q generated by C, K and hj, and let N1 be the
subalgebra of Uqglg generated by C, K and X ,f

Proposition. Uysly, * N_ ® H® N, (PBW)
Now, recall that when we spoke of catagory O of § we used the triangulation
given by . A
g=g-obog. =gt on)ebe (gl eny)

Definition. A vector Q in a U-module V is highest weight if it is both an eigen-
vector of K*!, C*! and h;, and if x;rﬂ =0Vk € Z.

We say V is a highest weight module if it is generated by a highest weight
vector.

Note, unlike category O we do not require the g-version of g, (ie X7) to
annihilate €2 for it to be of highest weight.

Theorem. Let V be a finite dimensional U-module. Then
(1) C=C"tonV
(2) H = {hy, K+*',C*'} acts by commuting operators on V.
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(3) There exists a highest weight vector Q in V.

PROOF. (3) We will prove this by contradiction. Suppose there does not exists
v € V\{0} annihilated by all z}. Let v € V be an eigenvector of K, ie Kv = \K.

Then there exists a never zero sequence n,wzv,xzmzv, ... in V. The then these
have eigenvalues ), q?\,¢*), ... contradicting the assumption that dim V < oc.

Therefore, Vo = {v € V|zj}/v = 0Vk € Z} # 0 and is acted on by Ky and K.

Consider Q2 € V) a simultaneous eigenvector of Ky and K. Then the action of
vy =< X{7, X7, K; > on Qis given by K;Q = ¢,¢™Q for ¢ € {1} and n; > 0.
Similarly the action of vy =< X", X7, K; > is given by K¢Q = enq™ ) where
€0 € {£1} and ny < 0 since €2 is lowest weight for vg.

But now, CQ = KoK 1Q = (epey)g™ T Q and so K1C'Q = €1 (ege; ) g (ot
Since € is a highest weight vector for (Uyslz)® for all i € Z, i(no +mn1) +ny1 > 0 for
all ¢ € Z. But this is only possible if ng +n; = 0.

From the argument in the preceding paragraph, CQ) = £Q for any Q € Vj, so
C = C~'onVj. Then, since H preserves Vy, H acts on V; by a commuting operator.

(1) Now, since C'is central we can decompose V into V' = P, V#* where C acts
by p on V# and V# is a submodule. But each V# had a nonzero V' and C acts
by +1 on it so pt = u~' and u = +1 only. Therefore C' = C~! on V whether V is
irreducible or not.

(2) Property (1) clearly implies property (2).

O

Corollary. FEvery finite dimensional representation of Uqf:[g is highest weight.

3. The Drinfeld Polynomial

For a finite dimensional representation there exists €2 € V such that x,fQ =0
for all k € Z. Then

(3.1) 3,0 =d 0
(3.2) 0, Q=d 0

for some pair d = {d‘k", dy }k>0 C C. Conversely, we can construct an irreducible
highest weight representation such that (3.1 and (3.2]) hold: Let

V(d) = Ugsla/(Ny + (@, — dy) + (¢ — df))
where

dt(u) = Zd;"ur € C[[u]]

r>0
d”(u) = Zd;u‘r € Cl[u]]
r>0

Theorem. (Drinfeld, Chao-Pressley) V (d) is finite dimensional if and only if there
exits a polynomial P € Clu] with P(0) # 0 such that

" __ _deg PP(q_Qu) — "
v = g0 P2 — b
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Where the equality is understood to be as formal power series, ie where ﬁ =
1—uQ+u?Q?—.... Then P is called the Drinfeld Polynomial of the representation.

We will need the following result:

Proposition. There exists a sequence {P;},>0 C H =< K,hig > [(c — 1) such
that

(1) P(u) :Zrzo u' P, € H[[u]] where 1(u) :Kf’(g(’:)“>
P —(fl)rq’“( (@) mod N
r r(r—1 r—1 r) — T — r—1 )
= = ; Lr—s + =
(3) (-1)rq" Y (a] ) (1)) = =" 27 P K" mod Ny where X(7)
X'

PROOF. (Of Theorem) =
First, rephrasing slightly

R

evaluating at u = 0 we get that 1y = KQ = ¢%Q) for some d € Z since V (d) is finite
dimensional. So deg P = d.

Lets apply (1)) to Q: since ¥(u)Q = d™ (u)Q

d d
wWQ=> Po=> PO=>Y pQ

r>0 r>0 r>0

where p, is the eigenvalue of P, on ). Note that the second equality comes from
the fact that by , P.Q =0 for r > d. Then, if p(u) = Zf>0 D

d+ (U)Q _ dp(q_Q’u,) O
p(u)
We now need to show that the same P(u) works for d~ (u). To do this we apply
@) to Q with r =d + 1:

d
Zxd+1 LPIEY =0

Now, KQ = ¢9Q so P,KIQ = (qu)PdH_SQ. Apply z}_, | to both side of the
above and use
’(/}nfs - (bnfs

q—q!

d
a—q 12% s — Pn— S)PSQ:Z(dI—s_d;—s)PSZO
s=0

If we take n large enough7 the smallest n — s can be is when s = d, so for n > d+1
since d~ has no positive coeﬁ"lcient

[x:—d—p $;+1_5] =

to get

(1) forn>d+1: Y0, n T PF=0
()fOI‘O<TL<d Zg O n ‘;PSJF*ZS nd:l 9P5+

(3) forn < —1: 3¢ Pr=0

sOnss
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Now, from 1 (u)% qdp;ffi(u))Q we get
-
(33) Zp+d+ dq—2rp;0—
s=0

Since p,, = 0 for n < 0 we can rewrite as

d
> d, PF=0
sS=n

and so Vn < d,

(3.4) Zdn P =q¢pt

We claim that these two facts together imply that

1 Plg?u)

P(u)

when we consider the right hand side as expanded in powers of u~
this we note that

(3.5) P(u)X =gq

L To see

d d d
= g P = E Pou=u? E Py u™"
r=0 r=0 r=0

and
d

P(quU) — q72dud Z Pd_rufquT
r=0
so the right hand side of (3.5) is

d —d+2 _
Zr:O q * TPd*T’u "

Zf«lzo Py_ru=r
and so, given that ®(u)Q =3 - u""dZ, €, 1} reads
(3.6) > d-,pf I s

s=0
Forn=d—r, (n§d5r>0)thisis

Zd—s n+s Zdn sps _qd 2np1t

which is exactly what we want.

Therefore V(d) is finite dimensional only if there exists a polynomial P € Clu]
such that P(0) =1 and

deuk = dEgPP q 2u deu

k>0 k<0

We digress briefly now to prove the proposition and will then finish the proof

of the theorem.
O
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PROOF. (Of Proposition) (I)): First,

P(q"*u) - —2
S N = \IlSPT—S :KP7q "
RS

Y(u) =K
for all » > 0. Now, the left hand side of () is

1bOlDr + Z wsprfs
s=1

So K(¢g~* —1)P. =% _ ¢sP._sforr>1or

K1 <
Przi P’rfs
e ;wo

: This follows from and the recursion above. Start from and multiply
on the left by mB’ to get

(=07 D (@) @g) D = =Y slg— ¢ )T P KT = KT ] Py
s=1

as claimed.

(3): Recall that we cant multiply on the right since we’re working modulo a
right ideal so to prove by induction we need away to write x7 (z§ ) (21) in terms
of (2g)™ (x1)"+1) so we need to perform the following computations:

(QGR 1)

- i1 1 _ i
27, (@) *]=m;(ﬂc§)[x1,x$](w§)

1

> (@Y Kha(ag)
=0

(QGR 2)

=[2] ) () X (Xg)

j=0
r—1 ]
= 2IXS ()Y g
7=0

= 2l (o) Mg
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Where the second equality come from [h1,z;] = [2]zx41 and the third
from )
, T 1
Zr —1¢7% = q > =q "]
- qg -1
7=0
and

vfad — Pafel = Pafal — ol ad
(QGR 1) Continued. Now:
K

[r+1]!

=g Y PRI = et )
7=0

- +)(r+1)]

EEN (z3) hig~"[r +1]

= —q "K(z{)"h — ¢ VK (af)
(QGR 3) By a similar proof we have

[z, (a:;(rﬂ)] = q’”Kxf(T)hl - Kxf(rfl)xg_

Now, (=1)"q"r=V ()= (@) = 3" 27 P_,K"™' mod Ny so by
multiplying both sides by z; on the left we get

[r+ 1(=1)7q" "D () ()Y

~(=17 Y (¢ K @)+ g K @) 0Y) () = = Y et P K
s=1

Multiplying by z& on the left we get

[r][r + 1](*1)7“q7“(r71)(IS‘)(T)(:C;)(rJrl) _

(1 (7R ) D+ g 2R )Y = ) ) = Y ey P K
s=1
O

PROOF. (Of Theorem) <

We want to prove that if there exists a polynomial P such that

_ aeg pPd?u)
dy (u) = ¢ PW =d_(u)

then V(d) is finite dimensional. We will do this by constructing V'(d) explicitly.

Our main tool will be a map ev, : qu:[g — Uysly. Classically, 5?2 is just a
loop algebra so for any a € C* we just evauate at a. Assuming we ca find such a
map, we can then pull representations of Uysl, back to qu:lg. Since we have a Hopf
algebra structure on Uysly we can then take tensors of U,sly modules.
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Proposition. For all a € C* there exists an algebra homomorphism ev, : Uqf:[g —

Uysly such that evy(z})) = g " E"E gpg evg (), ) = g k" K"E,

Proor. We will construct this map using the quantum KM generators:

(3.7) eve(Ky) =K eva(Ko) = K1
eve (X)) =F evo (X$) =q 'aF
eve (X ) =F evo(Xg)=¢q¢ ta'E

so that the composition
Uysly < Uysly =% Usly
of evaluation with the inclusion map of the constant loops is the identity:
K, E,F—K, Xt K, E,F
We claim that this extends to a homomorphism. We need to check that

eva s (XHVPXE — [3(XHPXEXE +[BXEX,(XEP — X(XE) 0

Let check for the case i = 1,7 = 0, +:

..+ q 'a(FPE - [3|F?EF + 3|FEF® — EF®) =0

we can rewrite this as

[E, F3] — [3]F[F, E]F =0
FK - K'F

q—qt
[8]F2[K; —2] — [8]F?[K; —2] = 0

[8]F2[K; 2] — [3] 0

So the relation check out. In addition the following relations are clear:

€Vy :
K=K —K
Xf: —»X(:)t

X —a Kt
Xy — Kzt
7 = X{ K —q 'aFK
et =K 'X; —qa 'K'E
We can use then derive the rest of the map from the above:

eva(¥1) = (= ¢ lzg,2f] = (¢ — ¢ K
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and
eva(h1) =evq([ag, a7 1K)

¢ a([E,FK]K™)
K- K1

“lg— = —qilaF[E,K]Kf1
q—q
K—-K-!

=q¢ 'a — +a(qfq71)FE
q—dq
([l
Next,

[Hy, 2] = £[2]j,

so we can compute evg(x; ) by induction on k£ > 0. For the other relations we
can use ®; = —[zd, 77 ,](g — ¢~ 1) to get eva(<I>1) Oy =K 'h_1(qg—q7!) to get
evg(h_1) and [h_q, 2] = £[2 ]xk | to get ev,(z) for k < 0.

Recall. If V,, is the unique irreducible Type I representation of Ugsly of dim n 41
then it has a basis vy, ... v, and Uysly acts on this basis by

K . :qn—QiU
[n — i+ 1]Ui_1
sz =[i 4+ 1]vi+1

Definition. Let V;,(a) := ev’V,, an irrational representation of U,sly of type (I, I).
In particular C' acts by +1 since ev,C = 1.

Recall. There are two important things to note here: First ev, is not a Hopf
Algebra homomorphism. Second, Although we have shown this evaluation map to
exits for Uqg[g and indeed it can be shown to exist for Uqg[n for a general lie algebra
g there is no guarantee it exists.

Corollary. For n € N and a € C* the action of the loop generators xf on Vy(a)
is given by

eva (2 )v; =q *a" K* B,
:qfkak [n — + 1]qk(n72i+2)vi71

:aqu(n—%—i—l)[n — it 1]”1‘—1

eva 2y )v; = Fa" F K v,

=arg" "V 4 o

so Vp(a) is a highest weight representation with highest weight vector vg.
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The Drinfeld Polynomial of V,,(a). For k > 1

(=g )brvo = [, woJvo = wf w5 vy = & o1 = a*¢" " V[nJvy = (ag

And vy = Kvg = q"vg. So (aq"1)¥[n] and ¢" are the eigenvalues of 1}, so

di(u) =¢" + Y (ag" V) (q" — g )i

E>1
o o aq" tu
=q"+(¢" — ¢ )m
21 —ag " lu
Tz aqlu
_ aPlau)
P(u)

Where
P(u) = (1 —aq" *u)(1 — ag">u)(1 —ag"®)...
P(q%u) = (1 —ag"3u)(1 — aq"*u)(1 —ag" 7). ..
Example. For n =1, Vi = C? we have Py, ,) = (1 — au).

So now we're going to try to start from a polynomial of the form (1—aqg™u) ... (1—
aq~™u) and show that it’s the Drinfeld polynomial of some representation. Take
P € Clu] such that P(0) = 1. Then

P=(1-au)...(1-anu)
and we can construct V(d) from Vi(a1) ® ... ® Vi(an,) as follows:
Theorem. V(d) is a subquotient of Vi(a1) ® ... ® Vi(a.,,) where Vi(a;) = C2.

In order to prove this we need to understand A on U,(Lslz). Recall that by
[T12)
AK;) = K; ® K,
AX) =X oK +10 K

AX) =X, @1 +0K;'®X;

But what we’re really interested in of course is A(v);) and A(®;), however these are
not known in full in loop generators.

Proposition. Let 24 C Uy(Lsly) be the subspace generated by the z,f, k€Z. Then
(QDS 1) Modulo UZ3 @ UZ_

k
(39 A =zfeK+lec +> @, k>0
=1

k—1
(310) Ay =25, 0K +1eat, +) 2t ®¢, k>0
i=1
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(QDS 2) Modulo U=, @ UZ?

k—1
(311) A(zy)=a; @1+ K@z, + Y 9 @1y, k>0
i=1
k
(312) A(T,) =27, @1+K '@aT, +Y ¢ 02t k>0

i=1

(QDS 3) Modulo UZ, @UE_ +UE_ QUE,

k
(3.13)  Ar) =Y i @ vk (= A@(w) = P(u) @ P(u))
=0
k
(314)  A@k) =) 20D jy (= A@(w) = 0(u) @ D(u))
=0

£ . +,k £ . +,k
Or, more compactly, for X5, =3 soxu” and XZ5 =3, (7, u

(QDS 1) Modulo UZ3 @ UE_

(3.15) AXT =X @y +10 X3,
(3.16) AXL, =X, 00 +10 X%,
(QDS 2) Modulo U=, @ UZ2

(3
(3.18) AXy=X_1®1+®® X,

17) AXSp=X5,01+9® X3,
18
(QDS 3) Modulo UZ, @ UE_ +UZE_ @ U,

3.19) A= @

(
(3.20) AP =0 @

PrOOF. We will use the follwoing scheme for this proof:
(QDP 1) Prove the above for zif for k = 0,1
(QDP 2) Use ¢ = {z], 75 } to prove the above for 1. Use hy = (¢ — ¢~ 1)K 149y
to prove the above for h;.
(QDP 3) Use [hy,zi] = :I:[Q]xir1 to prove the above for z3
(QDP 4) Compute A(®;) then A(h_;) then use [hy,z{] = :&:[2]3:2[“.
(QDP 5) Finally, use ¢y = {x',:, zg -
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3.1. (QDP 1). By Drinefelds Realization (3.8)) and the Coproduct Structure
(1.12) we have:

Arf =rf @ K +1®af
Avy =25 @ 1+ K '@ ay

and
Ar] = AX)A(K)
=(Xg @ Ko+1® XK ®@ Ky
=@ K'9Ky+ 1o KTHEK @ K,
:J)l— ®K0K1+K1 ®.1?1_
=2 @C+K®zx]
Similarly,

Azt =CK'@CK Y (X; @1+ K,'® Xy)
=CK'®@CK Y (C'Kat, @1+ K;' @ C'Kat))
=25, @ CK ' +1®at,

3.2. (QDP 2). Now, since ¢, = C(q — ¢ 1)[zf, 2] ] we have

AYy=(¢g— ¢ H)C@Caf oK +1@s],27 @C+ K @]
=1 @ KC? + KC @Y1+ (q— ¢ ")C®Claf ® K, K @ z7]
=1 ® KC? + KC @1 + (¢ — ¢ ')?KC @ KC[2Jaf @ z

where the last equality follows from

i K@ Koy — Kol @ 2] K = K® K(q %rvd @ ] — ¢*xf @x7)

Now: ¢ = (¢ — ¢ )Khy = hy = (¢ — ¢~ ') K14 implies that

Ahy=(q—¢ H)TTK T @ K Ay
= @C*+Co®h —(¢—q¢ )2CC 2f @y
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3.3. (QDP 3). Since [h1, 2] = [2]2] we have

Ay =L MeC?+Coh—(g-q HRICOC af ®ay 2 @K +1@x]]
i @C?’K+C®af —(¢—q¢ C@Claf @z7,2f @ K +1® (]

o @ CPK+Coaf —(¢—¢ C@C{(¢®—1)(zg)? @ Kzy —(q—q ag ® C '}
=2f @ C?K +C@af — (- ¢ )(¢® —1)0()? © CKxy + Caf @

=t ®C2K+C’3:8' @Y1 +CRx —(¢g—q ") (¢* - 1)C(z§)2®C’Kx1_

By induction this yields the coproduct structure A(z}) for all K > 2 (although
in practice this might be tedious to compute). (QDP 4) and (QDP 5) follow from

the induction above.
O

4. Tensor Products of Irreducible qu:[g-modules

Recall the definition of ev, the evaluation map (3.7) and S the antipode map
(1.13)):

eva(Ky) =K eva(Ko) = K1
evo (X)) =E eva(Xy) = ¢ 'aF
eve(X| ) =F evo(Xg)=¢q¢ 'a'E

S(K;) =K'
SN =X K
SX;7) =K, X,
Proposition. ev,0S = Soevy, where the S on the right hand side is that of Uysls.

ProOF. We will check that these agree on the KM generators Kj, Xii. This
is clear for ¢ = 1 since ev, on these is just "the identity,” and for K. For XOi we
have the following:

eva 0 S(XJ) = evo(—X§ Ky') = —¢ 'aFK = —qaKF
while
Soevy(X))=S(—¢ 'oF) = —¢ 'bKF
so these match provided b = ¢%a. A similar proof holds for X .

Corollary. V,(a)* = V,(¢%a)
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PROOF. The action of X € Uqf:[g on the left hand side is given by
Xg=goeve(5(X)) =goS(evea (X))

But as a Uysla-mod, V7 =2V, so the result follows.
O

We want to determine when the tensor product of two irreducible representa-
tions of is again irreducible.

Definition. Let S C C* be a finite subset. We call S a ¢-string if it is of the form
{¢:a72¢G a7 a7 e

P(u)y, ) = (1 - aq"_lu) (1= aq_”_lu)

has roots S = {a~1¢"*1,... a=1¢g7 "} which are a ¢-string of length n + 1.

Definition. Two g¢-strings S; and Ss are in general position if either

(1) S; U S, is not a g-string
(2) Sl g SQ or Sg Q Sl

Lemma. Any finite subset of C* with multiplicities can be written uniquely as a
union of q-strings in general position.

Theorem. A representation V,,(a1)®...@V,, (a,) is irreducible if and only if the
strings sp, (a;) are in general positions.

Example. The representation Vi(a;) ® ... ® Vi.(a,) = C¥a1) ® ... ® C*(a,) is
irreducible if and only if for all ¢ # j either a; = a; or a; # qﬂaj. In particular
V1(a)®™ is irreducible. Note that this implies that ev, is not a Hopf algebra mor-
phism since V;(a) is reducible as a Uysla-module.

PROOF. (Of Theorem) First, consider the case r = 2, ie for V,,,(a) ® V;,(b). We
may assume that m > n since V ® W is irreducible iff W ® V is.
Recall the Clebsch-Gordan rules:

Vm & Vn = Vm+n @ ‘/m—i-n—Q b...D Vm—n
as a Uyslo-module. In fact, the highest weight vector €2, corresponding to Vi, 4—2, C
Vi ® V,, is given by
P
Q=D (=1 "D m = p + il — iy @ o™
i=0

Take p > 0. We will compute the action of T on €,. First,
Azt ) =2, @ K ' +1@aT,

and

eve(z v = aF g2 H D — i 4 1w
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8
I+
=
@)
bS]
I

S (-1)ig "D m — p + il — ]!
% <q(n2i)a1q(m2p+2i+1)[m ptie 1]U£T,2_1 ® v,(n)5¢<p

+ aflq*(n72i+1) [n—i+ 1]’01(77112 ® U¢+15i>0)

p—1
—q! {Z(—niqi(ni)“”m?ﬁl[m —prit 1 - ® u§">}

p—1
—b ! {Z(—l)iqi("_i)+i+l[m —pti+ 1 — i @v™
=0

i
L

(=1)i[m — p+i+ 1[n — i)lg " FH) g (M) (@71 gTnom =2 ey

Il
o

i
So x7,Q, = 0 if and only if b/a = ¢"+m=2r+2,
Now, this then implies that
0= [22%,9Qp = [ho1, 2] = 25 h-19y
so xg h_1Q, = 0. But h_;€, has the same weight as ,, so h_1Q, = \Q,, and
[h—1, $:k+1][2]_19p =25,9,=0
for all k£ > 0. Similarly, x;er =0 For all k£ > 0.

In summery, if 2 = ¢"*™=2P+2 then V,,,(a) ®V,,(b) contains a subrepresentation
not containing it’s highest weight component (ie the one generated by 2y). But
similarly, any such subrepresentation is also a subrepresentation for Uysly C Uysly
and so a direct sum of Vi, 4,,—9,’s for some p’s > 1.

Next we will show that V;,(a) ® V,,(b) has a proper subrepresentation con-
taining Qo iff (Vin(a) ®@ Vi, (0))* = V,(¢*b) ® Viu(g?a). This in turn holds iff
b= g ntm=2"+2 where p’ = 1...n. Thus Vy,(a) ® V,(b) is an irreducible repre-
sentation iff 2 ¢ {gt(ntm=2pt2n_

Exercise. This is equivalent to S, (a) and S, (b) begin in general position.
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General Case. First, assume that @ V;,,(a;) is irreducible but Sy, (a;) and
Sp, (aj) are not in general position. Then &) V,,, (a;) is homomorphic to @ Vy,,, (ao(1))
for all o € S, so we may assume that ¢ = 1 and j = 2, But then by the previous

analysis V,,, (a1) ® Vp, (az) are reducible and so @ V;,,(a;) is as well.

It remains to show that &V, (a;) is reducible only if the S, (a;) are in general
position. We will need the following:

Lemma. Suppose the Sy, (a;) are in general position and that ny < ... < n,. Then
Vi (a1) ® ... @ V,, (a,) is generated by the tensor product of the highest weight
(n1) ny)

vectors vy ' @ ... Qv

Assuming the lemma holds, then starting from V,,,(a1) ® ... ® V,, (a,) with
Sp, (a;) in general position. By our analysis of r = 2 and the fact that S, is gen-
erated by transposes (¢ ¢+ 1) the above is homomorphic to Voo (ar(1)) ® ... ®
Vg (ag(ry) for all o € S, so we may assume as above that n; <... <n,.

Now, by the lemma there exists no proper subrepresentation containing the
highest weight component V', ie the UqﬁA[Q—mOd generated by v((]nl) .. .®U(()m) since
if W C @ Vi, (a;) is a subrepresentation containing V then W+ C (Q V,,, (a;))* =
® Vi, (¢%a;) contains the highest weight component. Then then we have a contra-
diction since the S, (¢%a;) are in general position.

O

Proor. (Of Lemma) We will prove the lemma by induction on r. First, for
r = 2 we are done by the analysis in the proof of the theorem.

Let V,(a) :== @ Vi, (a;). We claim that V;,(a) is generated by
o) =™ .. ey @)

(n

by applying the lowering operators z, to Q' ® vm’") to get, by the induction hy-

(n

pothesis, @,, Va,(a:) ® vnf). Then we can get the rest of V' by applying x0+.
Now, we claim that ' ® vgm‘) € Vn where Vi is the highest weight component
of V,,(a). First, this is true for ¢ = 0 by definition so if we can use induction on ¢
to prove it for i = n, this will prove that Vy = V.

Assume that Q' ® v; € Viy :=UQ. Let k > 0. Then z; (' ® v;) € V;, and
k-1
o (Q@v) =2, @vi+ > Y @i

j=0
k—1

= .’L‘;Q/ & v; + Z dj’r,la:f_jﬂ/ ® F’Uiq(k_])(nr_%)
§=0
k-1

= JC];Q/ ® v; + Z dj7r_1b7]f7jﬂl ® Fv;
j=0
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where ¢;Q = d;,—19 and b, = a,q" 7L If we let Ag 1 = Z?;& djp—1bE™
we get the far more readable formula

Xy (Q/ ® ’Ui) = JJIZQ/ X v; + Ak,rflﬂ/ ® Fv;

More generally we get
r—1
‘TCI;QI®U7; :ZAk,jUO®~~~®FUO®H~®vi
j=0

where F'is in the j 4 1 position. The matrix Ay ; is given by Ay ; = Zg;é dp,jbfﬁ'
for
Yoog™ ® . ® 0™ = dpyug™ @ g™
and b; = ¢;¢" ! when j <7 —1 and b; = a;¢" ~***! when j =r.
Now, if (Ag,;)j=0..r—1,k=1...r is invertible then Q' ® v; is a linear combination
of (z, Q' ®v; where k =1...r so we're done. That A is invertible follows from the

fact that i
det A = g>i= " T b, [T 0k — ™ 0))
J J<k
so det A = 0 implies (since b; # 0) that by, = ¢*"7b; for some k < j and so, if k < r,
ay = a; g™ ™ which violates our assumptions.

O

Corollary. Any finite dimensional representation of Uqf:[g of type (I, 1) is a tensor
product of irreducible representations. Two such products are isomorphic if and
only if they are obtained by the same tensor factors.

PROOF. If V is finite dimensional and irreducible then P = Py = (1—aju)...(1—
amu). Write S = {a; '} as a union of ¢-strings in general position S = Uj=1 Sn,; (a;).
Then ®;:1 Vi, (a;) is irreducible with Drinfeld Polynomial P and so is V. O



CHAPTER 4

Introduction to Statistical Mechanics

References

e Reif. "Fundamentals of Statistical and Thermal Physics”
e Pathria. ”Statistical Mechanics”
e Tolman. ”The Principles of Statistical Mechanics”

1. Motivation

Statistical Mechanics is the branch of physics that studies the behavior of a
system with a large number of degrees to freedom N >> 1. For example, if we
wanted to study all of a particles of air in a room then N ~ 10?3 (Avagadro’s
number); other examples include say electrons in a piece of coper or magnetic spins
in a bar of iron.

The basic question is how can go from the micro (eq Maxwell’s Equations) to
the macro (eg the Ideal Gas Law PV = nRT)?

1.1. Example: Ising Spins. A lattice
(say 1-dim) with N sites and each site la-
beled by + =] or — =] on a circle.
We call configurations of up and down ar-
rows Microstates (eg.  (+,+,—,...)). In
the model here there are 2V possible Mi-
crostates.

1.2. Example: Continuous Systems.
Consider a volume V containing N parti-
cles. We impose periodic boundary con-
ditions on V so we can actually think of
the volume as a 3-Torus. Then each par-
ticle has position ¢ and momentum p and
is endowed with continuous degrees of free-
dom:

e Position ¢} = (v,y,2) € T?
o Momentum p; = (po,py,p:) €
S A

69
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So this gives use a phase space M = T*T3 x
...xT*T? which is N copies of the tangent bun-
dle.

In both of the above systems we can con-
strain the microstates of the system by intro-
ducing external conditions, for example conservation of energy for the continuous

system leads to
N 2
D

E:
2m

i=1

and conservation of energy for the Ising model give us, if the magnetic moment
M = number of up spins - number of down spins, ie

M = p(ps — p-)

the conservation law £ = —M H where H is come constant.

We note that in the following it will often be useful to us to use a ”discrete-
ized” phase space, given by dividing the phase space into cells of a given symplectic
volume (eq. Opdq = h (= h in quantum mechanics))

2. The Microcanonical Ensemble

The Microcanonical Ensemble (MCE) is the
probability distribution specified by the hypoth-
esis of equal a priori probabilities, ie all mi-
crostates with (N,V,E) are all equally likely. R

Set Q(N,V,E) = # of microstates given
(N,V, E). For example, in the Ising spin model
we have

E = —uH(N: — N_) = uH(N —2N,)

R+6R

SO
N N!
Q(N,E)=Q(N,Ny) = e
)= 0N = (v ) =
2.1. Example. Lets consider an ideal gas over a spherical hypersurface in
momentum space R3”. Then

P
E:Z;Qm

and R = v2mE. Then

JyNENTIR ey OF

Q(Na‘/aE):w(Na‘/aE> B3N hg,iN

where V¥ is the position factor and §R/h3" is the size of the unit cell.

Let p be any probability distribution on the (classical) phase space M. We say
that we are studying ”Equilibrium Statistical Mechanics” if p is invariant under
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time, ie if % = 0. So, is the uniform distribution at equilibrium? Recall that under
Hamiltonian time evolution H(p,q) = E. In general, by Liouville’s Theorem

dp dp OH  Op OH
dt Opi 0q;  0q; Op;
Now, the uniform distribution is independent of both p; and ¢; and so the above

derivative is 0. Therefore it is time independent. It’s importnat to note that there
are of course many more invariant distributions; indeed % =0 if p = p(F) since

{H,H} = 0.

3. Temperature

For the Ising model, assume that we’ve di-
vided our space into two systems. The to-
tal energy is given by FE;,; = FEa + Ep +
FEinteraction Where in our example we can as-
sume Einteraction = 0. Let Q(EtotaEA)
be # of states in the combined system
A @® B with combined energy (E4,ER).
So

System A System B

QU Eiot, Ea) = Qa(Ea)Qp(ER) = Qa(Ea)QB(Eior—
Ey)

Since all the states with a fixed F;,; are equally likely the probability that A
has energy F 4 is maximized when

d d d
0= —InUEio1, E4) = — InQy(EF4) — —— InQp(FR) = -
T (Btot, Ea) T A(Ea) aBy " B(Ep) = fa — BB
where 5 )
=—hQ=—
b= = 07
is the definition of temperature and
S:k‘BIHQ
is entropy. Note that
o5 _1
OE T

4. The Canonical Ensemble

In the previous discussion, if B >> A we say that B is a "heat bath.” In general,
a particular microstate of A is energy E4 occurs with probability p; o< Q(Eior —E4)
by assumption where F4 << E;;. So we can use a Taylor expansion to get
0ln Q)
aE Etot

In Q(Etot — EA) ~In Q(Etot) —

or, putting g = aénEQ

Q(Eior — Ea) & Q(Ep)e PEA

then p; = ce=PEa where ¢ is constant and e~#F4 is called the Boltzman weight.



72 4. INTRODUCTION TO STATISTICAL MECHANICS

Now, in the MCE we fixed the energy, in the Canonical Ensemble we will instead
weight by the above. We normalize the Boltzman distribution by the requirement

that
ij = Zce‘ﬂEj =1
J J

soc ! = Zj e PPi = Z where Z is the partition function. So once we know Z we
can easily find
e~ BE;
pbj = z

5. An Alternative Distribution

Consider N -systems, all identical (eg a Ising chain), with total energy £. Let j
label the systems with the same energy and let n; be the number of systems with
energy F;. Then

> ni=N
J
Z njEj =&
J
As for Ising spins,

Y

is the number of configurations with occupation numbers in n;.

I'({n;})

(Multinomial Coefficients)

Now, we want to look for a distribution of {n;} which maximizes I' subject to
the constraint that for

Inl =lnN! — Zlnnj!
J
=NInN —-N) - an Inn; —n;
J

=N1nN — an Inn;

J
(where the second equality is by the Sterling Approximation and the second is by
canceling the N with the n;) we have
OInT =— Z(na Inn; +1)on; =0
J
where >, dn; =3, E;dn; = 0.

We now introduce Lagrange multipliers («, ) such that

Z(lnnj + a4+ ﬁE])aTL] =0

J



5. AN ALTERNATIVE DISTRIBUTION

So now Inn; +a+ BE; = 0 which implies that n; = e~

distribution. So, choose a such that
S =t e
J J

Then

Next, we choose § such that

1 ey —
sz:njEj— szef[jEj Y

Finally, we have p; = % and so
Inl'=NInN — Z(J\/pj) In(Np;)
J
:NlnN—J\/ij(an\/+lnpj)
J

:—Nijlnpj
J
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—BE; is the most likely






CHAPTER 5

Quantum Groups and Statistical Mechanics
1. One-dimensional Ising model

1.1. Introduction. Phase transitions = a discontinuity of a miscroscopic ob-
servable M in terms of one of the parameters of the
system (E,T).

Examples:

(a) melting of ice (drastic change of density)

(b) boiling of water

(c) magnetization - here we have a discontinuity at low (room) temperature;
at high temperature there is no discontinuity.

The phase transition can happen only in the thermodynamic over infinite vol-
ume limit (N = #particles — 00)

We will consider the microscopic (rather than measure) observable

<M> — Z M(U) eXp(—E(O’)/kJT)

M:¥—R ith
— wi 7

oeX

where Y is the state space, ¥ = Maps{1,2,... N} — {£1} = {£1}". The
visualization of this simple model is a line with N particles on it.

1 2 3 N
[}

The energy is:

N N
E(O’) = 7JZO’1‘O'H_1 - HZO’Z
=1 =1

where the first sum of the RHS expresses the internal couplings, and the second
one the external couplings. In this formula we have the following:

k is the Boltzmann constant;

H € R is the magnetic field strength;

J € R is the coupling constraint;

the periodic boundary conditions hold: on41 = 07.

The Boltzmann weight is

75
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p(o) = exp(—FE(0)/kT)Z™ ! = exp(KZUiaiH + hZai)Z_l

i=1 i=1

H
where we used the notation K = %, h = T Z is called the partition

function as is equal to

7 = ZGXP(KZUWHI + hZUi).

Using the periodic boundary conditions we infer that the system is translation
invariant: 1
Take 0; : ¥ — R and F(oy,,04,,...0;,) (for example, M = N(Ol +og+--+

on)). Then

(F(0iyy...04,)) = Z F(oiyy...,01)exp(—E(0)/KT) = (F(0i41, - - Tip41))

1
In particular, we have M = N<Ul +oo+-ton) = (o1) ={o2) = = (onN).

1.2. The partition function and the transfer matrix. We can express
the partition function Zy in a more preferable way using the transfer matrix.

h h
Zn = Zexp(KZaiai+1+hZai) = Zexp(K0102+§(01+02)) . eXp(KO‘N01+§(UN+0'1>)

Analyzing the possible values of a term exp(Ko; U¢+1+%(0¢+0¢+1)), we consider
a 2 x 2 matrix T indexed by +1:

exp(K +h)  exp(-K)
(Teer)e,creqz1y = < e}lzp(_[{) epr()K - h))

T is called the transfer matrix. Computing the trace of the Nth power of T
leads precisely to the partition function:

Zy =Te(TV) = AN + 2\
where A1, Ay are the eigenvalues of T so that A\; > |A2] (by Perron-Frobenius,
for example). From here we get

Inz, 1 M\ Voo
nN zln)\1+ln<1+<2) )N_> In )\

N A1



1. ONE-DIMENSIONAL ISING MODEL 77
Consider the free energy, Fy = —KT In Z, then the free energy per unit site is:

Fy
f= lim e =—KTIn)\

N—o0

Also consider the internal energy of the system

27" E(o) exp(~E(0)/kT) = kT* aénTZ

geED

If we compute A; explicitly, we get

A1 = exp(K) cosh(h) \/exp(QK) sinh? h + exp(—2K)

so plugging this in

f(H,T)=—-KTln <exp(K) cosh(h)\/exp(QK) sinh? h + exp(QK))

We used that Tr(T') = 2exp(K) cosh(h) and det T = exp(2K) — exp(—2K) =
2sinh(2K)

H,T
1.3. Magnetization. Lemma: M (H,T) = —%.
Proof: M(H,T) = —Z 1201—1— -+ on) - exp(— kT Hzaz

where Fy = — Z Joioi41
i

On the other hand, we have Z = ;exp —k—T (Eo(oc) — H Z 0;)). Differenti-

ating with respect to H we get

S—Z_ T Z (Z az> exp Zal/kT Z(a,} = %M(H T)

7
Fy : e .
From fny = N = —KT/N In Z we get the result by differentiating with respect
to H. .

Hence we may express
exp(K) sinh(h)
\/exp(QK) sinh?(h) 4 exp(—2K)

M(H,T) =

Hence there is no phase transition with respect to H, which is "bad” in some
sense.
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1.4. Correlation functions. Recall the entries of the transfer matrix T
h
Toio; = exp(Koioj + 5(0:05)).
To understand the correlation we consider the following

712 :
<0‘1 'O’3> = ZN O‘nglngazggo‘g,...Tgngl =

= Zy' Te(ST?STN?)
1 0
0 -1
From here we easily deduce the general formulas:

where S =

(07) = Z;,l Tr(STN)

(0i0j) = Zy" Te(STIITN—IH)

cos¢p —sing

Define the eigenmatrix P = sing  coso

) where 0 < ¢ < 7/2 such that
cot 2¢ = exp(2K) sinh(h)
A straightforward verification shows that P satisfies the following properties:

e It diagonalizes T, i.e. P~'TP = <)E)1 /\0>, where \; > [As;
2

1 [ cos2¢ —sin2¢
° P SP(—siHZ(b —cos2¢

Using this eigenmatrix, we get

_ M0 AN=It 0 N—oo
(0i0j) = Z5*' Tr (P—15P< 1 »_i> P—15P< ! Z )) =
N 0 N 0 At

= cos?(2¢) + <iz >j_l sin?(2¢)
1

Similarly, we get {(o;) = 2 cos 2¢.
So we get the correlation functions

—= =exp [ == |, where
M AN
A\t exp(K) cosh(h) + y/exp(2K) sinh®(h) + exp —2K
exp

A2 (K) cosh(h) — \/exp(QK) sinh?(h) + exp —2K

A2
When H =0 = h =0, we get £ = [In(coth K)]7! — 0o, as T'— 0.
So we get a criticality in the origin.

‘We use the notation <
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2. Two-dimensional Ising model on a square lattice

This model will be a more satisfactory one since it has a criticality (1944 On-
sager), hence it is more realistic than the previous one. However, it has been solved
only for 0 magnetic field.

We gather our notations: N = # sites, ¥ = {£1}V

N = Z exp(KZJin + LZUiJj)
o€s i—j i

is the partition function, where K = J/kT, L = J'/kt with k the Boltzmann
constant, i — j are the horizontal bonds (edges) and |} are the vertical ones.

We impose free boundary conditions (so there are no torus-like interactions at
the boundaries).

In the following, we represent the partition function in two ways, depending on
the temperature.

2.1. Low temperature representation of Zy.

Lattice L +e —e +eo
+eo +eo —e
+e —e —e
+eo —e +e

Given a lattice L, we define its dual lattice LV, that is:

e vertices of LY correspond to faces of L.
e edges of LY correspond to pairs of adjacent faces of L.

Given o € X, we can isolate the 4 vertices of L from the — vertices of L,
forming so-called ”islands”. To give a configuration o € ¥ is the same to give spins
of the faces of LY. Dividing the islands, we get a polygon configuration P(c)
on LY.

Remarks:
1) P(o) =—-P(0¢') & 0 =+0o’
2) E(o) = E(—0), because H = 0.
3) The horizontal edges in L that have opposite signs on their ends corre-
spond precisely to the vertical edges of the polygon configuration P.
4) As above, the vertical edges in L that have opposite signs on their ends
correspond to the horizontal edges in P.
Let r = |P,| = # vertical edges in P, s = |P,| = # horizontal edges in P, and
M = # horizontal edges in L = # vertical edges in L.
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Using remarks 3) - 4) we get

=K 0i0;+L Y 0i0; = K(M—r)~Kr+L(M—s)—Ls = K(M~-2r)+L(M-2s)
i—j Ii

So the partition function is

Zy =Y exp(K(M —2r)+ L(M — 2s)) = 2exp(M(K + L)) Y _ exp(—2Kr — 2Ls)
o P
The last equality holds since polygonial configurations in the dual lattice cor-
respond to states up to signs (remark 1), which also accounts for the factor 2.
Denote by v* = exp(—2K) and w* = exp—2L (it will become clear in the next
section why we use these notations)

Zn = 2exp(M(K+L))Zv*lp”lw*lp"l
P

2.2. High temperature representation of Zy. We define a similar for-
mula for the partition function for high temperature. We start with the simple
observation:

exp(Ko;0;) = cosh K + sinh 0,0
Using this, and denoting v = tanh K, w = tanh L, we have

ZIn = Z H(coshK + sinh Ko,0;) H(coshL +sinh Lojo;) =

o i—j i
= (cosh K cosh L)M Z H(l +vo0;) H(l +woio;) =
o i—j i
= (cosh K cosh L)M Z Z ol Prlyyl Pol H 00} H 0,0 =
o PCedgesof L i—jEP H‘GP
== (coshKCOShL)M Z vl PrlplPol Z H 0i0; H 0ROy
PCedgesof L o i—j€EP ‘fep

Now it’s not hard to see that
Z H 005 H oo =0
o i—jeEP lkep

except when every vertex has an even number of incoming edges which happens
precisely when P is a polygonial configuration on L. In this case, each term in the
sum is 1, hence the sum will be 2. Hence we got

Zn = 2V (cosh K cosh L)M Z pl Prlypl o]
‘P polygonial config. on L
Define K*, L* by
e tanh K* = v* = exp(—2L)
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e tanh L* = w* = exp(—2K)
Substituting these into the formula for low temperature representation we get

a similar one to the high temperature representation.
It is an easy exercise to show that the preceding definitions are equivalent to
e sinh(2L)sinh(2K*) =1
e sinh(2L*)sinh(2K) =1
From this we deduce that the relation is involutive, i.e.

(K,L) — (L*,K™)
exchanges horizontal with vertical (dual lattice), and exchanges high tempera-

ture representation with the low temperature representation.
Taking N, M — oo (N/M — 1) we have

1
—p = A}im N InZn (= f/kT, where f is the free energy per unit site)

For low temperature we get

—¢L = K+L+‘I’LV(U*,U)*)

1
where ®pv(v*,w*) = lim —In Z v*1Prly*Pel - and we assume this limit
N—o0
P(LV)
exists.
For high temperature we get

—¢r, =In(2cosh K cosh L) + @, (v, w)
Now we apply these formulas to the dual lattice:
_va (K*, L*) high;emll K*‘FL*—F‘I)L(U, U}) low t:emp~ ln(2 cosh K* cosh L*)+(I)Lv (’U*, ’LU*)

After eliminating ® v (v*,w*), we get

—r(K,L) = K + L — In(2cosh K* cosh L*) — 4w (K*, L*)
An easy calculation shows that In(2 cosh K* cosh L*) = 1 In(sinh 2K * sinh 2L*),
and using that at infinity L ~ LV, we arrive to

1
Y (K", L) =y (K,L) — iln(sinhQK* sinh 2L*)

2.3. Criticality. First consider the isotropic case, i.e. K =L

If there is K = K¢ a critical value, then v, is not analytic in K. From the
formula above we conclude that it is not analytic at K¢, either.

If this critical value is unique, then K¢ = K¢, and computation shows that
the only value can be K¢ = 0.4406 ... (Kramers-Wannier duality)

Peierls showed that there is at least one critical point K¢. Onsager proved that
this is indeed unique, so the preceding discussion is valid.

In the anisotropic case, if there exists a unique critical curve, it is at criticality
sinh(2L¢) sinh(2K¢) = 1.






CHAPTER 6

Ising Model on the Honeycomb Lattice

1. Low and High Temperature Duality

The partition function for the hexagonal Ising lattice (the black part of Figure
will given by

Z}V{(L) = Z eXp(L1ZUin+LQZUin+L3 Z 00
oce{£1}N /J J\ i
7 7 J
Where the magnetic field H = 0, N denote the number of states and L denotes the
interaction coefficients L; = J;/k,T where J;’s are the coupling constants. Now,

we have a dual triangular lattice given by the red part of Figure [I] The partition
function for this lattice is

Z¥(IL) = Z exp(K1 Z oi0; + Ko Z 005 + K3 Z 0i0;
rety 2N 7 -

. J v
i

Ko Kq

FicUre 1. The Ising Model on a Low Temperature Hexagonal
Lattice representation H overlaid with it’s dual High Temperature
Triangular Lattice C.
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In the previous section, we observed that for a spin configuration on vertices
of the square lattice

o€ {£1}V(£)
L
where P(o) is a polygon configuration on the dual lattice £}, and the Z, factor
denotes that this correspondence is up to an overall sign. Since H = 0,

E((T) = E(*U) = E(P(O’)) = 7M(L1 + L2 + Lg) + 2L17”1 + 2L27’2 + 2L3T3

— P(0)

where r; is the number of edges in P(o) ”perpendicular” to and edge in £ of
type i and M is the number of edges in LY parallel to a given direction. Note that
M is only the same for each direction in the limit. Then

ZQHN(L) = 26Xp(M(L1 + L2 + Ld)) Z exXp ((—2L17’1 — 2L27‘2 — 2L37"3)
P Cedges(LV

is the Low Temperature Representation. At low temperature, L; = % so the sum
of exponent above is small. Take 2N to be the number of vertices in L4 so that
2N is the number of faces in £Y,. Then, in the limit

# of edges in £}, ~ 2 = 3N
# of verticies in Ly ~ % 3N

so the partition function becomes

ZQHN(L) = 2exp(N(L1 + L2 + Lg)) Z exp ((—2L17‘1 — 2L2T2 — 2L3T3)
PCedges(LY)

2. High Temperature Representation for LY, = L¢ on the triangle lattice
Recall that for €2 = 1
exp(eK) =cosh(K) + esinh(K)
=cosh(K)(1 + etanh(K))
=:cosh(K)(1 + ev)

where v = tanh(K). Then for K := (Ki, K2, K3), the partition function for the
triangular lattice C becomes

Z§,(K) = [cosh(K) cosh(K>) cosh(K3)]N x

v (C)
Z H 1+ v10505) H 1+ ve0405) H (1 + v3040;)
oce{+£1} i \ =S

! Jj i
K2

= [2 cosh(K) cosh(K>) cosh(K3)]Y vt vl un?
[ 1 V27 U3
PCedges(Lc)

where r; is the number of edges in P//K; and v; = tanh(K;). Now we want to do
a matching: let v; = exp(—2L;). Then it can be shown that this imply that

cosh(K;) = el (2sinh(2L;))'/?
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which in turn implies that
(2.1) sinh(2L;) sinh(2K;) =1

We now have the following duality:
C 1 . . . N g
Z5(K) = 5(2 sinh(2L1) sinh(2Ls) sinh(2L3)) > Zsn (L)
provided ([2.1)) holds.

3. The Star-Triangle Duality

Observe that the vertices of the honeycomb lattice can be partitions into two
distinct sets: V(Ly) = AU B such that for any edge connecting i and j we have
i€Aand je Borje Aand i€ B. Then

(3.1)
Ly = Z exp ( Z Llaiaj + Z LQO'Z‘O'J‘ + ZLgO‘ﬂTj)
oce{+1}AUB o d i g,

i i i

Z Z Hexpab< Z Lloioj—l— Z LQJin+ZL30in)
o i .

oce{£1}4 oc{+1}B beB

il J il

Z H 2COSh( Z Llcriaj + Z LQCTiO'j +ZL30iO'j>
i AN .

oce{+1}4 beB

i Y i1

Z H cosh < Z Llaiaj + Z LQO’iO'j + ZL3O’1'O'j>
a’ o N I

Ue{il}A a .. i ) .
v it nJ i I

b

The idea here is that we want to write the above as a partition function on the
triangle lattice with vertices A and edges

a— g in A if and only if there is a vertex b such that ‘Y o
b
Now we will start parsing Eq. (3.1). We start by writing

(3.2)
2cosh(Ly10q, + La0g, + L30g,) = Rexp(K104,04, + K204, 00, + K304,04,)

The left hand side takes 8 values but by the evenness of cosh we can reduce
this to 4. The right hand side on the other hand only takes on 3 values so we must
add the R above. If R and K satisfy Eq. then ZJ (L) = RN Z$(K). This is
the so called Star-Triangle relation since we’ve replaced

al Y a With al v ag

as as



86 6. ISING MODEL ON THE HONEYCOMB LATTICE

FI1GURE 2. The Star-Triangle Duality.

Let solve Eq. (3.2]). By evenness, assume that the number of -’s is less than
the number of +’s. Then

o1 09 O3 ‘
1 1 1 2COSh(L1 + L2 + Lg) = Rexp(Kl + KQ + Kg)
-1 1 1 2COSh( L1 + L2 + Lg) = ReXp(K1 — K2 — Kg)
(
(

1 -1 1 2 cosh L1 — L2 + Lg) = Rexp(le + KQ — Kg)
1 1 -1 2 cosh L1 + L2 - Lg) = Rexp(—K1 - K2 + Kg)

Set ¢ = cosh(Ly + Lo + L3), ¢; = cosh(—L; + L; + L) then the above give us
exp(4K1) = ccy/cacs. Recall the basic hyperbolic trig identities:

cosh(a + b) + cosh(a — b)
2

cosh(a + b) — cosh(a — b)
2

cosh(a) cosh(b) =

sinh(a) sinh(b) =
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Then

CC1 — C2C3
exp(4K,) — 1 = T

cosh(Lq + La + Ls) cosh(—Lq + Lo + L3) — cosh(Ly — Ly + L3) cosh(Lq + Lo — Ls)

C2C3
_cosh(2Ly 4 2L3) — cosh(2Ly — 2L3)
N 2coc3
sinh(2L) sinh(2L3)

Ca2C3
e 2K (4K 1) sinh(2Ly)

20203
[ cacs H sinh(2L4) sinh(2L) sinh(2L3)
- (ccl) 2coc3
_ sinh(2L4) sinh(2Ly) sinh(2L3)
- 2(ccreacg) /2

= K!
Now by symmetry sinh(K;)sinh(2L;) = K~ for i =1, 2, 3. Multiplying all 4 initial

relations, we get
R* = 16¢c1cacs
or
R? = 4(6610203)1/2
= 2K sinh(Lq) sinh(Ls) sinh(Ls)
= %(sinh(ZKl) sinh(2K>) sinh(2K3)) !
Essentially what we’re doing here is averaging over the b points in Figure [2| This

is the temperature preserving since if T >> 0, L; and K; are both small so
sinh(2Ly) & sinh(2L3) ~ 0 and ¢ = ¢3 ~ 1. Then

64K_1 - Sh(QLQ) Sll’lh(2L3) ~ 0
B CoC3 -

We will now use both dualities:

H-L Temp Dual 1
) = 5l

Z$(K 5 (2sinh(2L;) sinh(2Ly sinh(2Ls)~ % ZJ% (L)

Star-Tri Duall( % %

5 2sinh(2L,) sinh(2Ly sinh(2L3) ™2 (R?) 2 Z§(K™)

1
= K FZR(K7)

where sinh(2K)(= (sinh2L;)~!) = K sinh(2K;) where the first equality is by the
High-Low Temp. Duality and the second is by the Star-Tri Duality.

Exercise. Show that the map K — K™ is an involution.

Now assuming that the free energy for L3 converges as N — oo and there
exists a unique critical hypersurface in K space then by the exercise we will obtain
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a critical point when K; = K;. But this implies that K = 1 and so K; = K =
0.27465. Similarly for the honeycomb model we have L; = LlC = 0.6584

4. Renormalization

Consider the 4N honeycomb lattice given by L1, Ly and L3 which is dual to
the 2N triangle lattice given by R, K7, K5 and K3 by

sinh(2K;) sinh(2L;) = K~ *

By taking the duality again we get that this is dual to the N honeycomb lattice

W
’ 6

ZS5y = Z H 2 cosh(z K;o4,)
se{x1} i=1
a6 4, a2

Then by requiring
6

2 cosh(z K,0,,) = exp(L,0,0;)
i=1
you should get a new lattice with parameters LZRG. It can be shown that at criti-
cality L = LEC.



CHAPTER 7

Ising Model on the Square Lattice

1. Commuting transfer matrices

Given a lattice as above we slice the lattice along the diagonal and turn it to
yield a ”stack” of one dim spin chains. Now, assume that H = 0, we have periodic
boundry conditions and that there are m rows, where m is even. Then the partition
function has the following form:

ZIN =24y ¢pe{t1} VorooWoros Vosos - - Vo 16m Wonmen

where:

Voo = exp(XI,(Lojo; + Koit107))
and
Woy = exp(Si_y(Lojoi, + Ka07))
The partition function then becomes:
m

Zn = tr(VWVW ... VW) = tr((VIV) %) AT/?

Where — A is the largest eigen value.

O)
A\
L 4
O)
N
¥

F1GURE 1. The Ising Model on a Square Lattice

89
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Our aim is to study products of the from: V (K, L)W (K’, L"). This corresponds
to this part of the lattice:

NN N
NN

So
(VW)pg =g Vopgr W gr
=You.. oI 1exp[ '(Loj + Kojy1 + K’ 0 +Lo ;+1)
:H;'llej(UjVJj+17Ujvaj+1)
where

X;(a,b,c,d) = Sperpryeap(f(La+ Kb+ K'c+ L'd)
Graphically we have

2. Commutation

We are looking for constants K', L’ such that the following matrices equation
is satified:

(2.1) V(K,L)W(K',L') = V(K',L')W(K, L)

Note first that I1}_, X; (0,07 + 1,0%,0;41) is invariant if

X(a,b,c,d) — exp(Mac)X (a,b, c,d)exp(—Mbd)
Then, if there exists M € C such that
exp(Mac)X (a,b,c,d) = X'(a,b, c,d)exp(Mbd)

where X’ = X but with L and K exchanged with L’ and K’ respectively.Then
condition ([2.1]) holds.

Schematically this is
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\/ \/

EfM‘ (

/\ /\

co od

\/ YV

= Zf’,
Where (M,K',L) — (L3,L2,L1) and where the bottom two graphs are the

Star—Trlangle Duality. The bottom equality holds for Ly = L/, L; = K and implies
that

X pr

sinh(2L) sinh(2K) = sinh(2L’) sinh(2K")

3. Inversion

We want the product: V(K, LYW (K’, L") to be "near diagonal” i.e we want
(SL1) X(a,b,¢c,d)=0ifa#cand b=d

3.1. Corollary. If the (SL1) holds then
(VW) e = HXJ'(%%H»U}’ 0541) =0
j
unless ¢ = +¢'.
In addition, the (SL1) is equivalent to the following:
(3.1) cosh(L—-K'+ (K +L")) =
(3.2) cosh(L-K'— (K+L'))=0

3.2. Exercise 1. (SL1)& K' =L+ (m1/2)mq and L' = =K + (m1/2)mao
where mq, mo € Z of opposite parity

3.3. Exercise 2. Exercise 1 = sinh(2L)sinh(2K) = sinh(2L') sinh(2K")

From now on we will restrict to the case m; = 1;mg = 0.
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3.4. Exercise 3. Prove that both

X(a,b,c,d) = 2i % sinh(2L)
and
X(a,b, —a, —b) = —2iab x sinh(2K)

Now,
(VW) g,er = 0g,¢/ (26 % sinh(2L))" + 04, g (—21 * sinh(2K))"
and
V(K, L)W (L + (ir/2); —K) = (271 % sinh(2L))"I + (—2i * sinh(2K))"R

where Ry g = 4 4. Now, R? =1 so the right hand side of the above is easy to
invert. Therefore (VW*) is easy to invert and so V' is easy to invert. In addition
we have the relations:

(1) (K<—>L; ¢<—>¢/):>V<—> W

(2) V(-K,—L) = RV(K,L) =V (K, L)R for some W

(3) Fix ¢ and ¢’ and consider the following

"
AN,

Let 7 = the number of unlike pairs
[}

N

o

and let s = the number of unlike pairs
[ ]

/

o
Then r+ s = the number of sign changes in sequence o}, 02,05, ...,0}
and
Vser = exp[(m —2r)K + (m — 2s)L]
Assume now that m = 2p is even. Then for 7’ € [0, p]
m—2r=2(p—r)=2£2
SO
Voe = exp[£2r' K + 25'L)
for r',s" € [0, p]
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and
Voo (K + %,L + %) = Voy (K, L)
3.5. Some more relations.

® Copr = 05,040050, -+ - 00,0 18 called the ”Coxeter element”
e Translation invariance in the direction — X X X X X X X X implies that

V(K,L) =C~'V(K,L)C
W(K,L) =C~'W(K,L)C

Moreover we have the following properties: W(K,L) = V(K,L)C by
inspection.

e Since V(K,L)YW(K', L") = V(K',L')W(K, L) we use the above to get
V(K,L)V(K',L')C =V (K',L')V(K, L)C and so

[V(K,L),V(K',L')] =0

Or, to summarize, V(K, L), V(K’,L’),C, R all commute.
e Inversion identity.

VI, LV(L+ 5 ~K)C = (2ish(2L)"T + (~2ish(2K))" R

Consider joint eigenvector x of above matrices, ie

V(K,L)x =v(K, L)x

Cx =cx
Rx =rzx
(3.3) C'"=R’=1=c"=1"

Then the inversion relation becomes:

v(K, L)v(L + %i, —K)c = (2isinh(2L))" + (—2isinh(2K))"r

We are interested in the eigenvalues of V ¢ W = V2C. Define A(K,L) £
v(K,L)c'/? so that evaluation of VW are the square of the A(K,L). The the
inversion formula takes the form

AL, K)A(L + %Z —K) = (2ish(2L))" + (—2ish(2K))"r

Now, we need to parametrize all K and L such that

sinh(2K) sinh(2L) = k~*
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To do this, we will restrict to the case &k = 1 (if you don’t the proof still goes
through but it requires elliptic, not hyperbolic, functions). One such parametriza-
tion is given by the following. Set

sinh(2K) =tan(u)
sinh(2L) = cot(u)
For u € (0, %). Note, this makes sense since we are assuming K, L € R and for

u in the interval, tan u is a strictly increasing function covering R*. Complexifying
we get

sinh(2L) = cotu
The functional relations then become
Aw)A(u + 7/2) = (2icot(u))”™ + (2itan(u))"r

{Smh(QK) = tanu} CC* s {u K, L)

Where

K — L+ 27 = sinh(K) — —sinh(2L)
L+— —K = sinh(L) — —sinh(2K)
Next, we can derive the following:

e*K = cosh(2K) + sinh(2K)

— /1 +sinh(2K) + sinh(2K)
= \/m + tan(u)

_ 1 n sin(u)
V/cos2(u)  cos(u)

1 +sin(u)

~ cos(u)

We get a similar result for e 2% and e*2L:

2K _ 1 + sin(u)

)
1or 1l cos(u)

sin(u)

cos(u

Where as always u € (0, F).

Now, recall that

’

1+sin(u).” 1+ cos(u).®

Voo = exp(£2r' K £25'L) = (

cos(u) sin(u)
where 7/, 5" € (1,2,..., %) and 7/, s’ are even, and so
t(u)
(3.4) Voor = v ——p

(sin(u) cos(u))
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where t(u) is a polynomial in sin(u), cos(u) of total degree p. Now the eigen-
value equationV (K, L)z = v(K, L)x implies that v(K, L) is of the form given in
(3.4) and so A(K, L) are of the form given in (3.4]).

We will now check the periodicity of A(u) and notice that under the u — u+ 7
we have:

sox _ LEsin(u)  1Esin(u) 2K
~ cos(u) cos(u)
so K — —K £ 47 and similarly, L — L £i3. Now,
V(-K + zg ~L+ ig) = V(-K,L)=V(K,L)R

so we must have

(3.5) Alu+7) =A(u)r

A(u) = 672721)1’/(00 +‘Cleiu + o + C2nenipu) =
(sin(u)cos(u))?
Now, (3.5 implies that if 7 = 1 then cop+1 = 0 and if r = —1 then cop, = 0. We

now state the following claim:

3.6. Claim. For some p,u; € C,

Alu) = P(sin(u)cos(u))*pﬂézosin(u — uy)
where [ =2pifr=1landl=2p—1ifr=—1.
PROOF. Let
nipu

p(u) = co + cre™ + -+ cope = (co+ crwz + ... + copwan)

for w = ™. For r = 1 above we have
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Thus we have

We now plug the above into the claim. The left and side becomes

l

P (sin(u) cos(u)) ™™ H(—l)p sin(u — u — j) cos(u — u;)
3=0
and the right hand side becomes

cos(u)®  sin(u)”
sin(u)™  cos(u)™

(—1)P2*] ]

Canceling between both sides we get

!
(3.6) 0> H(—l)p sin(u — u — j) cos(u — uj) = 2*P[cos(u)*" + sin(u)*"p]
3=0

Now, set z = e?* and z; = e*% so that
) 27122 - 22)271
sin(u — u;) cos(u — uj) = ————————

Then the Equation (3.6) becomes

p l—2p
Z z
Al = e )Y - 1))
7=0

This determines zj2 and p? exactly. So we get
zj = —tan?6;/2

m(G-1/2) . _
0. — { 5 r=1
J o —1

J3p r=

and

This then implies that ¢; = ln(tan(g)) and so that pu; = £5 —i¢;.

4. Ice Type Models
We will base our 2-dim Ice Type Model on a square lattice of the type pictured.
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The physical model that we have in mind for this mathematical models is the
structure of HyO ice. Each vertex is occupied by (fixed) oxygen atoms and each
edge is an ion of hydrogen (H™) which is closer to one of the two endpoints. The
"Ice rule” (by Slater) states that each for each of the four ions surrounding each
atom, two of them are closer that atom and two are closer to the respective neigh-
boring atoms. This is called the Electric Neutrality.

We have the following six configurations of H™ ions:

—ob o (1) —o _be (2) — ob o (3)

The partition function for this model is

Z- Y )

orientation on edges

for e = ny€1 + - -+ + ngeg where

n; = number of atoms in configuration

€; = energy of configuration 4

Another name for the above model is the Six Vertex Model.

4.1. Choices of Configurations. There are two main choices of configura-
tion we will consider:

1) The 2d Ice Model is given by the assumption €; = - -+ = g which implies
€; = 0. Then all states have the same 0 energy and Z is simply the number of
states.

2) The Ferroelectric Model. For T small enough all the dipoles point in the
same direction(Slater) and we have ¢ = €3 = 0 and €3 = ... = ¢ > 0. In this case,
the ground state consists of either all of the configurations of type (2) or type (3)
above.
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||||:||||}9M
' .
}<P1

FiGure 2. Row Model for Ice Type Models

3) The Antiferroelectric Model. Similar to the Ferroelectric Model, we
assume that €y = --- = ¢4 > 0 and that e5 = ¢ = 0. In the ground states only (5)
and (6) occur. i.e there exists only two such states.

Assumption: €1 = €9, €3 = €4, €5 = €g,

Comment: € is invariant if we reverse all the configurations in zero external
field.

Remark: Under periodic boundary conditions we can always assume €5 = €g

5. Transfer Matrix
In Figure let ¢, be the state of row 7 € {up, down}". Then

Vip,¢') = Zexp(—(mlel + ...+ mgeg) kT

where m; is the number of atoms in state ¢ and the sum is taken over configurations
of horizontal lines. In addition we have periodic boundry conditions:

Z=Y Ve, 02)V(p2,03) ... V(gar, 1) = TeVM ~ AN
$1.-.PM

Let o € {£1} be the vector of spins associated to ¢ such that o; = +1 if the H*
ion is close to the top atom and «; = —1 if the ion is close the bottom atom. Then

Vop :=V(e, @)= Y wlp,0n|B,pa) ... w(par, onr|Bar, i)

Hisees AN

where w(p, a|B, 1') = exp(—e;/kgT’) is the Boltzman weight of

ﬁ /
13 N
and Q@
ai=w(++|++) =w(-—|--)
bi=w(+—|-+)=w(=+[+-)

¢ =t = [+ =) =w(=+| - +)
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Let V. = V(a,b,c). We are going to look for another transfer matrix V' =
V(a', b, ) such that V and V’ commute, ie such that VV’ = V'V. Now,
(VV/)aB =2 Xy ZWW(Mlv 1|y, p2)w (2, azlyz, pu3) - - -
w(pn—1, an |, p1)w’ (vi, 71|Br, Y2 )w' (v2, Y2l B2, v3)
o w(N,INIBN, 1)
=X, vezy Hf\; s(i, Vil i1, Vi |0, Bi)

where s(p, v|p/, V'|o, B) = Eyw(pa|yp')w' (vy|fr) corresponds to the diagram

B
14 [ ] I/l
ol
1t . '
(07

Let s(«, 8) be the matrix with entries s(uv|u'v'|af), (ie €End(C? ® C?). Then
(VVap = Trezgee (s(o1, B1) - - s(ow, By))

and similarly, if s’ = s with ¢’ — a, b’ — b, ' — ¢

(VV)ap = Treegez (8" (o, B1) - - - 8" (an, Bn))

5.1. Ansatz. If there exists M € C? ® C? such that s(a, 3) = Ms'(a, B)M~*
then secretly VV/ = V'V,

6. Star-Triangle Relation

Let M := w"(v,plv/,u”), then the Ansatz reads, in the form s(a, )M =
Ms' (e, B):

> wlpaly, w")w! (v, 418, V") (V1 ) )
Yo

= > Wwpl e aly, 1 (V418,10
’Y?/J///7’///

For all p,v, u'v', a, 8. See Figure :

The unknowns in this equation are a’,t’,c’;a”,b",c¢”, 3—14+3 —1 = 4. There
will be one equation for each of the a, 3, i, 1/, v, so there would seem to be 26
equations. But the Ice Rule gives tell us that w(u, «|8,v) =0 unless py+a=F+v
so the left hand side of the Star-Triangle relation is 0 unless

ptat+v=0+0 44
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' '
1 1
. X B
Yo Yoy ’
w v v w
v ! v I
1 1
1 = 1
1 h 7 1
il “ ’ © ! i "
H— n K — o
" ”
I 13

FIGURE 3. Star-Triangle Relation

or the following all hold.

pAo=y+p"
v = B + !
V//+u// — V/+ﬂ,
=>ptat+v=0+1 44
We can brutally enumerate the possibilities to get the following list:
pola v | BV p
1 (1 (1|11 |1
1 (1 (-1]1 |1 ]-1

1 /-1]1
11 )1
1 ]-11
101 |1
-1-1)1
11 -1
1 ]-1)-1

So there are 20 = 1 + 9 + 9 4 1 possibilities. There is also symmetry under
flipping in any direction so that cuts the number of equations in half to 10. By
interchanging a < 3, u < v/ and v « u’ we see that 23/2 equations are trivially
satisfied:
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o
L/
N

o H
I 6
. H
w//
. \V
v a
The remaining six come in three pairs:
pla v g |8 |V
11 -1]1 |[-1|1
11 |-1]-1]1 |1
1(-11 |-1]1 |1
The actual equations are:
(1)
aclalﬁb//_’_ca/cﬁ
W'(=11] = 11) W' (11]11)

(2) ab/'d” =ba'd" + 'V’
(3) c'a” = ca’V + b’

101
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Now, we can eliminate ¢’,b”,a” out of the above equations to get
a2 + b2 _ 02 B (CL,)Q + (b/)2 _ (C/)2
ab a't’!
and so we see that V and V'’ commute if

2,12 2 "2 N2 (2
(6.1) on = CHb— (@A) (@),
ab a’t!

7. Parameterizing Solutions of Eq (6.1])

f a2+b2—02

3 = 2A we will assume that A and a are

To parametrize solutions o
constants. Then

1+ (b/a)® + (c/a)?
b/a
Set = b/c and y = c/a. Then we ca rewrite the above as 1 + 2% + y? = 22A

=2A

S0
y = (1422 —2zA)1/2

/2. Now, we want to parameterize expansions of the form f(z) =

soc=ua(..)

[(x — z1)(x — 22)]"/? so we'll substitute
t(mx1>2 = p2_r"n
Xr — X9 r — T2

and therefore

- xr1 — t2.’1?2

1—1¢2
So we can write ( )
t(rx1 — x2
F(x) =t(x — == =F(t
() = tla — 2) = 232 = Pt
-1
In our case, x122 =1 and A = %(xl +x2) = % so we have the equations
(7.1) a= a
a(z—t2z7 !
(7.2) b= aqp=2-t®) lljﬁ 1)
-1
(7.3) c= ot
By removing denominators we get

(7.4) a= p'(1—t)r
(7.5) b= ol 1)
(7.6) c= p(a?-1)

And finally by making one last change of variables we get:

(7.7) 1= —exp(—A)
(7.8) t= exp(3(v—2A))
(7.9) pr= pttay!

These finally imply that
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(7.10) a= psinh(25?)
(7.11) b= psinh(2$Y)
(7.12) c=  psinh(})

In summary we’ve made the following changes of variables: V = V(a,b,c) =
V(p',t,z) = V(p,v,\) = V(v). Now, V(v) is holomorphic/entire function of v and
V(v) and V(u) commute for any u,v € C. This implies that simultaneus eigenval-
ues of these matrices will be holomorphic functions in v.

Now A” = A(a”,b",¢") = A = A’ so we can can parametrize a”,b”, ¢’ as
above for the same A for some v” and p”’. Plug these into equations you get the

following constraints:
A o "
sinh (W) _o

This implies that v/ = A +v +v". Lets write u = ’\JQ”’ (and similarly for v’ and
u”") then

(7.13) a= psinh(A —u)
(7.14) b= psinh(u)
(7.15) c= psinh(A)

So v = A+ v+ v’ becomes v’ = u + v and we have the following relations
Ru)R(u)R(u") = R(u")R(u")R(u)
which becomes
(7.16) Ru)R(u+u")R(u") = R(u")R(u+ u")R(u)

These are the Yang Baxter Equations written as braid relations on R.

8. Yang-Baxter on R Implies Commutativity of V'

Now, recall that
V= Z w1, 1| B, p2) - - - w(pn, an| B, p1)
M1, s UN

where V' €End((C?)®N), V = Trez(Roi - .. Ron) where Ry; €End(C% ® C?) and
have matrix entries

R = w(palu')
Then the partition function over M rows is given by
ZM = Tr(C2®..A®(C2 (VM)

We want to show that the Yang-Baxter Equation for R implies the commutativity
of V. We will write (7.16]) in a more standard form:

(8.1) Ri2(A)Ri3(p) Ra3(v) = Roz(v) Ris(p) Riz(M)
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Claim. If (8.1 holds then the RTT-Relasions
Rog(A)To (1) T5(v) = To(v)To () Roo (A)

also hold, where

e The identity occurs in End(C3 ® CZ ® (C?)®¥)
e T} stands for RgiRos ... Ron is the monodromy matrix.
e Tj similarly stands for Rg; Rgs - - . Rgn

8.1. Corollary. The RTT-Relasion implies the commutation relation V(u)V (v) =
V)V (p)-

Proor. First, we’ll rewrite the RTT as

Rop(NTo (1) To(v) R (A) = To(v)To (k)

so that both sides act on the tensor product of two spaces. Then taking the trace
we see that the Ryg5(\) and the Ro})l (M) terms cancel and we get

V(mV(v) =V@)V ()

O

PRrROOF. (of Claim) We will write out the left hand side of (8.1) and use the
fact that Ro;(¢) and Rp;(v) commute to move each element Ro;(u) next to its pair
Rg;(v). We then use the Yang-Baxter Equation to commute Rgg(A) past the pair

and finally use the commutation to reorder the equation into the proper ordering.
The LHS is:

Rog (M) Ror (1) - - - Ron (1) Ro1 (v) - .- Roy (v)
00(A) Ro1 (1) Ror (v) ... Ron (1) Roa (V) - .. Ron (V)
o1(V)Ro1 (1) Rgo(A) - - - Row (1) Roa (V) - - - Ry (v)
= ... = Rg1(v)Ro1 (1) Roa(v) Roz2(p) - - - Ry (V) Ron (1) Roo ()
= Ro1(v)Roz2(v) - .- Ron (v) Ro1 (1) Roz2 (1) - - - Ron (1) Rgo (M)
O
Recall from the square Ising Model that we could find eigenvalues with func-
tional relations between the eigenvalues the commuting transfer matrices. We now
need functional relations of the eigenvalues of V' (u). Instead of postulating func-

tional relations between eigenvalues of V(u) we will postulate functional relations
of V and see how it descends to the eigenvalues:

8.2. Baxter Ansatz. There exists commuting matrices Q(v) depending holo-
morphically on v such that

(1) Q(v) is invertible for at least one vy € C.
(2) V(u)Q(v) = Q(v)V (u) for all v and w.
(3) Q(v) commutes with the spin operator

s= (b %)ore(l )
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(4) The entries of Q(v) are of the form
E t' exp(rV/2)
—p<rp

(5) Setting ¢(v) = p" sinh® (V/2), where p is the parameter from before, and
N = X —im, we have

V(0)Q(v) = (A — v)Q(u+ 2X) + d(X +v)Q(v — 2X)
Recall that

2 2 _ 2 —1
A:—cosh(x):a +2 2 c_n —;xl
a

for ;1 = e™ and X fixed. So then VQ is a linear combination of two
shifted versions of ). This then is a second order differential equation
in @ and comes from the observation that in the model the eigenvalues
actually do satisfy these requirements.

Now, to go from (5) to the eigenvalues of V we diagonalize V(v) and Q(v)
simultaneously, ie see if there exists P €GL((C2)®V) such that P~V (v))P and
P~1Q(u)P are diagonal. Now we can check that

V()T =V (-v)
Qu)" =Q(—v)

so these are unitary automorphisms and so are simultaneously diagonalizable.

Let A(v) be an eigenvalue of V(v) and ¢(v) is the corresponding eigenvalue of
Q(v). Now,

A(v)q(v) = p(A = v)q(v + 2X) + d(A + v)g(v — 2X)

by the Ansatz (called Baxters TQ Relation). The assumptions on the entries of
Q(v) give us

n
. U — Uy
v) = c | | sinh
gv)=c]] < 5 >
=1
For some n < N and some v, ...,vp. Now,

(A —v)q(v+2X) + (A + v)g(v — 2X)
q(v)

and since A(v) is entire the numerator must vanish on any vy,...,vy. This gives
us the relation that for j =1,... N

dA—vj) _ gqlvy; —2X)
A+ ’Uj) q(vj +2X\)

A(v) =

(8.2)

We will call this equation the Ansatz Equation.
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FIGURE 4. Diagrams associated to the weight in the matrices G;(+)

9. The Construction of Baxters Q-Matrix
Let g be a column of Q). We will assume that ¢ is a pure tensor:
9g=910G2®...0gN
where g; € C?. Then
Vg(v) = Trez(Ro1gt, - - -, Rongn)

where Ro;g; €End(C3)®C2. Note that the factor of C? corresponds to one complex

dimension of spin up, on of spin down. Define G; := Rg;g; and let o = 1 so that
Gi(a) €End(C%). Then

Gil@)ppr = > w(palBu')g:(B)

B
o
p= ag; +
Gl(+) M:t (Cgi(—) bgi +))
and
boi(—)  Con(+)
. i(— cg;(+
Gi(—) = #:J_r ( 90 af]i(+))

where, we have drawn the diagrams corresponding to the weights a and to the 0 in
Figure [d] Note that the 0’s occurs because the configuration isn’t allowable.
Now

)

(9.1) [Vgla = Trez (G1(a1)...Gn(am))

Ansatz. Assume now that we can, by a suitable change of basis, make all
the G; upper or lower triangular. Ie there exists P; for ¢ = 1,..., N such that
Gi(ci) = P;H;(a) P} where the H;(a) are upper triangular. If so, then

Vgla = Trez(Hi(ou) ... Hn(an)) = g1(a1) ... gy (an) + gi(a1) ... gy (an)

Now, to solve Equation (9.1). By the Ansatz

(N Pooy = P, (i)
Gz(az)Pz-‘rl = ]Dz ( 0 g;(a2)>
where Pi+1 = [pi+1|qi+1]- Then
1

GiP; = gj(a; pi)
st (1

%
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and we can write G;(a;)P;y+1 = ¢i(o;) P;, where a = 1. In coordinates this reads

> w(pel B )gi(B) Py (1) = gi(a) Pi(1s)
B!

for all o, pu € {#1}. There are 22 = 4 possibilities and we will simply list them:

pa|

+ + agi(+)Piy1(+) = gi(+) Pi(+)

+ - | bgi(—)Pipa(+) + cgi(+) Pipa (=) = gi(—) Pi(+)
-+ | cgi(=)Piyr(+) + bgi(+) Pipa (=) = gi(+)Pi(—)
- - agi(—=)Piy1(—) = gi(=) Pi(—)

The unknowns in the above equations are the (g;)’s, (g.)’s, and the p;’s. Now, we
can use the equations corresponding to (++) and (——) to eliminate g(£). The
second and third equations then become

bgi (=) Pi1(+)Pi(=) + cgi(+) Pis1 (=) Pi(=) =agi(—) Piy1(—) Pi(+)
cgi (=) Pip1 () Pi(+) + bgi(+) Pip1 (=) Pi(+) =agi(+) Pig1(+)Pi(—)

Set r; = P;(—)/Pi(+), then we have

bgi(—)ri + cgi(+)riy1ri =agi(—)riq1
cgi(=) + bgi(+)rit1 =agi(+)r:

We can now eliminate g;(—):

ar; — brig1
gi(—) = % - 9i(+)
CTilit

- ar;4+1 — b?"i ) gl(+)

This implies that
(ar; — briv1)(aricy — bry) = ¢*rivig
Dividing both sides by r;7r;11 we have
a? +v? —c? s

— Tit+1
e M et =2A = = +
ab Ti+1 T

SO

Tig1 = —re7

for o; € {£1} and so finally
ri = (—1)'rexp((o1 + ...+ 0i 1))

where 7 is arbitrary and > o; = 0 so as to have periodicity, note that this implies
that N is even.

Now, fix P;(+) := 1 so that P;(—) = r; = (—1)"exp[\o1,...,0:-1]. We also
have the freedom now to define g;(+) := 1 which in turn implies that g;(—) =
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r;exp((A 4+ v)o;/2). Recall as well that

a =psinh
b =psinh A ;— v
¢ =psinh A
gi(+) =a
G- = ariexp 2o,
We can compute g/ (+) by taking the determinant of G; P, 1 = ... from before and
setting det(P;4+1) = 1. The result is
g/ (+) =0
g/(=) = —briexp ——o0;
So
9= <TZ‘ expl()é”a) = hi(v)
and

r_ 1 _
gi =4 (—ri exp(32o; ) @
We claim that g; is the as before but shifted so
gi = ah;(v1 +2X\)

Similarly,

"o 1 o oy
9i = (ri exp(’é”m‘)) = hhi(v = 2X)

So

1

Vgla = g1(a) ... gn(a) + g7 (@) ... gx (@)
and so for y(v) = hy1(v) ® hy(v) € (C2H)EN

(9-2) Vinyy(v) = a"y(v +2X) + by (v — 2X) = (A — v) + o(A + v)

So this is a vector solution to the Baxters TQ relation.

Now, recall that a = psinh((A — v)/2, b = psinh((A 4+ v)/2 and ¢ = psinh \.
Thus, v — —v exchanges the elements a and b. Now, V(b,a) = V(a,b)”, in fact
recall that V has entries

Vog = Y wlmar|Bips).. wpyon|Bypm)
MHi..-N

SO

Vs = Y wlmpPiloaps) ... w(pyBylonpm)
MH1---BN
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9.1. Remark. The basic fact that we're using here is that w(uS|ap’) = w(—pals—
u') where the negation is required to preserve

wHt-—|+-)=w(-+|—-+)=c
WwH+|-=)=w(==]++)=0

but then negating p and p’ takes a = w(++|— =) tow(—+ |+ —) = b as
required. Thus, indeed V(b,a) = V(a,b)” and so V(—v) = V(v)7.

Let Qr be a 2V by 2V matrix whose whose columns are linear combinations of
the vector y(v) above and let Qr(v) = Qr(—v)T. Then it follows from (9.2)) that
(9.3) V(0)Qr(v) = ¢(A —v)Qr(v +2XN) + ¢(A+)Qr(v — 2))

By switching the sign of u, v this gives us.
V(=v)Qr(—v) = ¢(A +v)Qr(—v + 2X) + ¢p(A — v)Qr(—v — 2)\)
I
QL () = 6A0)QL(v+2X) + (A )QL (v — 2X)

Next, we want to claim that for any u,v we have

Qr(u)Qr(v) = QL(v)Qr(u)

We will call a typical column of Q,(u) y(u|r, o) where o = (01,...,0n), 0; € {£1}
subject to the condition that oy + ...+ oxy = 0. We then need to show that

y(—ulr',a")Ty(vlr,0) = y(~vlr’, o") Ty(ulr, o)
Now, the left hand side is

1
(1+rr! exp[i()\ —u)o, + = ()\ +v)oy]

‘EISEI:H

Il
—

1
(1+ririexpNoy+...+0i1+0]+...00_1) + 5()\ —u)o, + = ()\ +v)o;]

K3

so following Baxter we will call the above J(u,v|o1,...,0n) and look at
J(U,U|...,O'j+1,0'j,...)/,](u,1]|...,O’j,O’j+1,...)
_ LrrjexpMon 4. o1 oy .. 0h ) + 5(A = w4+ 5 (A +v)ay]
14 rrlexpMoy ...t o1 o)+ oi_q)+ 1A - u)o’ + 1A+ v)oj41]
1+ rirjexpAo1+...+0;+ 01 + ) %( —u)o’ o1t ()\ +v)oj41]

1+ ririexpAo1+...+0;+0] +.. 0§)+%()\—u) o ts LA +v)oy]

We want to show that this is symmetric in u and v. First, note that we can assume
041 = —0; since otherwise the result is obvious. Then there are only 2% = 8 cases

to check which are left as an exercise. Thus Q1 (u)Qr(v) = Qr(v)Qr(u) for any wu,
v.
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9.2. Q(u)Q(v) = Q(v)Q(u). To show that Q(u) and Q(v) commute for any u
and v we will use the above and the fact that Qg (vg) is invertible for some (and
hence a generator) vg. Set

Q(v) := Qr(u)Qz" (vo) = Qp (v0)QL(v)
Now recall that from Equation we have
V(v)Qr(v) = ¢(A = v)Qr(v + 2\) + (A + v)Qr(v2X)
Multiplying on the right by le(vo) we have
V(©)Q(v) = ¢(A = v)Q(v + 2X) + ¢(A + v)Q(v2X)
but we also have, by transposing Equation and letting v — —v we get
QL()V(v) = ¢(A = v)QL(v +2X) + ¢(A + v)QL(v2X)
SO
V(©)Qv) = Qv)V(v) = (A = v)Q(v + 2X) + ¢(A + v)Q(v2X)
And so V and @ commute. Finally,
Qu)Q(v) =Qr(vo) ' Qr(u)
=Qr(v0) ' QL (v)
=Q(v)Q(u)
Thus Q(u) and Q(v) commute and V(v) and Q(v) commute.

r(V)QR(vo) ™"

Q
Qr(w)Qr(vo) ™!

10. Spin Operators

We just have to check now that () commutes with the spin operators. Let
®N
G (1 0 )
0 -1
Sy(v) = y(v + 2mi)
which implies that SQg(v) = Q,(v + 27i) so
QL(v)S = Qh(—v)S = QI (—v + 2mi) = QF (—v — 27i) = Qp (v + 2i)
Where the 4’th equality is by the 47i periodicity. Thus

SQ(v) = Qv +27i) = Q(v)S
Also, SV (v) =V (v)S since
(SV(©)S Nap= Y erw(paa|Bips)Bras ... anw(pyan|Byp)

Hi---UN

= Z pw(proa |Brpg)papiz - . pnw (N an| B pr)

H1.--UN

= Z w(pron|Brpz) .. wlpyan| By )

H1---UN
=(V(v))as
since that fact that p;o; 0,41 = 1 means that p; ;41 = a;0; and so we can make
the change in the third line.

Then we can check that
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11. Consequences of Baxters Ansatz

It follows from the construction of @) that
SQv) = Qv)S = Q(v + 2r1)

so S2Q(v) = Q(v) by the 4mi periodicity of Q(v), so Q is a function of /2.
Moreover, if @+ are the diagonal blocks of @) corresponding to the +1 eigenvalues
of S then

Q(v+2mi) = £Q(v)

So Q4 is actually a function of e” and @_ is a a function of ¢"/< not involving even
powers. From the construction of @ is also follows that ) grows at most as fast as
exp(Nv/2). So Property 6 can be replaced by these conditions.

v/2

Further consiquences:

g) = > drexp((r)v/2) === > dpexp((r + N)v/2)

|r|<N |r| <N

will be a typical entry of Q(v). We can factor it as

Nv
c-e 2

(e —z1)...(e% —2,)

so that

q(v) = Z dz”

|[r|<N—-1

is a Laurent Polynomial in z = ez which is either even (when r’s have even powers)
or odd (when 7’s have even powers). We can factor it as above to get

qv) = e~ V71 Z dpx™ N = e WV (pg)) L (—ap) = ca T (@—21) . .. (T—22p)

|[r|<N-1
for some n < 2(N — 1) and some constant ¢. Thus,

q) =cz™(xz —z)(x+ 1) ... (¥ — 2n)(x + 2y)

n
.%'2 — LL'ZQ
=1
xT
i=1
n n T T
i
e[ 5 -2
=1 =1

:cﬁ(xi)Z" H sinh (” 5 “i)
=1 i=1

where x = exp (%) and z; =: exp (%) so indeed ¢ is proportional to

n . v—
Hsmh ( 2 )
i=1
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FIGURE 5. The six dot configurations at a vertex and the corre-
sponding arrow and line configurations.

for some v; € C defined up to 4mi. Thus if A(v) and ¢(v) are a pair of joint
eigenvalues of T'(v) and Q(v) respectively then to summarize

(11.1) q(v) f[lsinh (”2”1')

p(A = v)q(v + 2X) 4+ d(A + v)q(v — 2))
q(v)

(11.2) Av) =

12. The Six Vertex Model Continued
13. Line Configurations

We will now replace the dot configurations above with arrow on line configu-
rations as shown in Figure . Then the lines move upward or to the right (if one
starts moving up along a line) and never move down or to the left. Now, a line
might be able to not move upwards if a row is purely of type (4) but due to the
periodic boundary conditions if a line has started moving up it will continue to do
so. Moreover, because of the vertical boundary it will continue moving upward.

In conclusion, each non-horizontal line meats every row of vertical edges one
because it has to continue moving up and only one because it cannot go down. In
addition the number of lines in a given row of vertical edges is constant in any state.

13.1. Corollary. V. = 0 unless the number of down arrows of ¢ is the same
as the number of down arrows of ¢'.

Call the number of down arrows n. Our aim now is to find eigenvectors of
V among the states with ”quantum number” n. We will specify such states by
1<z <...<x, <N where z; is the position of the i’th down arrow and let
X ={x1,...,2,}. Then

9 X)=1®..91®|®1T®...€ (C)*N

T

Note, n corresponds to the weight of g(X) under the 5 action on (C2)®¥ so the
horizontal line configuration corresponds to the the fact that R is of 0 weight. Now,
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(a) (b) ()

FIGURE 6. Diagrams of line configurations in the case n =1

the eigenvalues Vg = Ag, where g = {g(X)} are of the form
Ag(X) =D V(X,Y)g(X)
Y

where

V(X, Y) — Z gMtmepmstmy ;ms+me

where X is a configuration of lines on one row of vertical edges, Y is the configura-
tion of the row above and the sum is taken over all allowed configurations of lines
on the intervening horizontal edges.

For example, note that the horizontal lines are the intervening configurations
of X =Y =0s0

V(0,0)=a¥ + 0V =A

13.2. Case n = 1. If we have one and only one down arrow then g(X) =: g(x)
where X = {z} and we want to solve Ag(z) =3, V(z,y)g(y).

e z < y We only have one possible configuration, shown in Figure a).
This gives us

V(z,y) = cb?"*"tegN~ oD

where the number of vertices between x and y is denoted y — x + 1.
e > y Again, we only have one possible configuration, shown in Figure
([2b). This gives us

Viz,y) = cbNty—r—loqr—y—1)

where the number of vertices between x and y is denoted N — (x —y +1).
e x =y We have two possibilities here, shown in Figure (2|c). This gives us

V(z,y) =N "ta+aV1b
Counting for all the various cases, the eigenvalue equation is

(13.1)
N x—1
g(x) =a"hg(x)+ Y AV am v g(y) 4 abN T lg(a) + Y b laN T et g (y)
y=z+1 y=1



114 7. ISING MODEL ON THE SQUARE LATTICE

Bethe Ansatz. Assume that g(z) = z” for some z as of yet undetermined.
Then

N N ba y—x—1
§ CQbN-i-y—m—lax—y—l)Zy :CQGN—sz-‘,-l) § ()
a

y=z+1 y=z+1
N—x
1— (b
:CQGN—221+1) ( a l))

z

1 bz
a

C2aN72Z:n+1) axflefxCQZN%»l

az —abz a—bz
Similarly,

CQGbN—lzm) at—1pN-z:2,
a? — abz a—bz
so adding these we get for the right hand side of (|1.1)):

1 P (y—
sumi_{c?bY N (y—o+1) v — _

aN-Tpat o CQa;V”zZH) B af”*le:CQz(ZN ) abN e 62(126N*1bz$)
a? — abz a—bz a? — abz
_ N ab+ (c? —b?)z o aw_le_g”c%(zN Sty a’? —c? —abz o
a? — abz a—bz ba — b%z

we can eliminate the unwanted term (the coefficient of (2% — 1) by simply setting
2N = 1. Then

2 _ 12 2 _ o2
AN <ab—|—(c b )z) BN (a c abz) o

a? — abz ba — b2z

All the eigenvalues corresponding to the roots of 2z = 1. We would need to do
some additional work in the general case.

13.3. Proposition. The preferred eigenvector of V for n = 1 is the vector

g(z) =1for all x =1,..., N and have a corresponding preferred eigenvalues
b+ (2 —bv?) a? —c? —ab
A=aV (& x| N
“ ( a? —ab @b ba — b?

13.4. Case n = 2. Now, g(X) = g(zy,22) for 1 < 27 < 22 < N and
V(X,Y) = 0 unless either z; <y; < a9 <y or y1 < a1 < yg < X9,
The contribution for the first type is

a1 E(21,y1)D(y1, 22) E(29, yo)e™ 72

where

_Jevrl dfr <y
E(m,y)—{ b/c ify==x

and

_Jeamvt ify<a
D(y,:c)—{ afc ify==x

Now, consider the following case:
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e x; < yi: In this case we have one vertex of type (5) for z; and y; —x1 — 1
vertices of type (4); for y; we could have a vertex of type (2) or (6). Then
E(xy,y;) = chr—=17 1,

e = = y: In this case we have one vertex of type (1) so we have F(x1,y1) =
b/c.

e y; < xo: Here, if x1 = x5 we've already counted y;. If on the other hand if
x1 < 31 then we add these contributions x1 < y1: D(y1, 1) = ca® ¥~ 1,

e y; = xo: In this case we have the partition 1 < y; = 22 < ys which
corresponds to a vertex of type (2). Then D(z,y) = a/c

e 75 < yp:Similar to the above, we have E(x,y2) = cbv2—2~1
Zo = yo:Similar to previous two, E(xa,y2) = b/c.

Thus the eigenvalue equation is

Ag x17x2 Z Z IE xlvyl)D(ylaIQ)E(I27yQ)CQNiyzg(ylva)

z1<y1<x2 22<Y2<N

+ Z Z b E(yy, 21) D(21, y2) E(y2, 2)cb™ "2 g(y1, y2)

1<y1<z1 z1<y2<z2

where the star indicates that we’re adding the condition that y; < ys.

13.5. Ansatz for the Eigenvector. We will assume g takes the form g(z1, z2) =

A1227' 252 A12 where Ajo is constant.

Use the ansatz, the first double sum becomes

> Z L E(z1,51) Dy, w2) E(wa, yo)caN V2 2 2

1 <y1<z2 2 <y2<N

= > @ 'E(w,yp)Dyn,za)eadt Y E(xa,yp)a 224

z1<y1<z2 z2<y2<N

The second summand here can be rewritten as follows:

b N
— 2N Zécz + Z bez—wz—laN—yzzg2
C

y2=z2+1
N Yy2—x2—1
b n_ e bza \’
:7aN xzz;z—l—caN To 1z§2+1 §
(& a
y2=z2+1
_ (bz;z)N—“’?
= aNfIZZgz +CCLN7$2712§2+1 ab
1 bz

a
The first sum then is the sum of the y; = x; part, the y; = xo part and
standard part.

Zl—lbaalz—ail—lczfl + awl—lcbI2—$1—1Z§2

za2—1 y1—x1—1 3
+ § ( ) — awg—Bc

y1=z1+1
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By Baxter, the result will eventually be
Aro{a® (L1a™2 =% 27t 4+ Mb"2~ %1 21?)
X (Loa™N =223 4 Ppb™N 7220V
_aN+w1 —mg—lbwg—wl (2122);32}

Where
ab+ (2 — b?)z;
a? — abz;
ab+ % — abz;
a? — abz;

02 Zi

Li = L(Zz) =
Pi = P i) =
(z:) a? — abz;

Similarly, the second sum is

A12{(CLIIP1 + Mlbxlzfl ) X (Lgaz27z1 Z;l + Mszglezgz)bexg

—_qg¥2— ™ bN+w1—x2 (2122)951 }



CHAPTER 8

The Six Vertex Model Continued

1. Line Configurations

We will now replace the dot configurations above with arrow on line configu-
rations as shown in Figure . Then the lines move upward or to the right (if one
starts moving up along a line) and never move down or to the left. Now, a line
might be able to not move upwards if a row is purely of type (4) but due to the
periodic boundary conditions if a line has started moving up it will continue to do
so. Moreover, because of the vertical boundary it will continue moving upward.

In conclusion, each non-horizontal line meats every row of vertical edges one
because it has to continue moving up and only one because it cannot go down. In
addition the number of lines in a given row of vertical edges is constant in any state.

1.1. Corollary. V., = 0 unless the number of down arrows of ¢ is the same
as the number of down arrows of ¢'.

Call the number of down arrows n. Our aim now is to find eigenvectors of
V among the states with ”"quantum number” n. We will specify such states by
1<z <...<xy, <N where z; is the position of the i’th down arrow and let
X ={x1,...,z,}. Then

gX)=1®..210]|®1®...€ (CHN

T

Note, n corresponds to the weight of g(X) under the 5 action on (C2)®¥ so the
horizontal line configuration corresponds to the the fact that R is of 0 weight. Now,

FIGURE 1. The six dot configurations at a vertex and the corre-
sponding arrow and line configurations.

117
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(a) (b) ()

FIGURE 2. Diagrams of line configurations in the case n =1

the eigenvalues Vg = Ag, where g = {g(X)} are of the form
Ag(X) =D V(X,Y)g(X)
Y

where

V(X, Y) — Z gMtmepmstmy ;ms+me

where X is a configuration of lines on one row of vertical edges, Y is the configura-
tion of the row above and the sum is taken over all allowed configurations of lines
on the intervening horizontal edges.

For example, note that the horizontal lines are the intervening configurations
of X =Y =0s0

V(0,0)=a¥ + 0V =A

1.2. Case n = 1. If we have one and only one down arrow then g(X) =: g(x)
where X = {z} and we want to solve Ag(z) =3, V(z,y)g(y).

e z < y We only have one possible configuration, shown in Figure a).
This gives us

V(z,y) = cb?"*"tegN~ oD
where the number of vertices between x and y is denoted y — x + 1.
e > y Again, we only have one possible configuration, shown in Figure
([2b). This gives us

Viz,y) = cbNty—r—loqr—y—1)

where the number of vertices between x and y is denoted N — (x —y + 1).
e x =y We have two possibilities here, shown in Figure (2|c). This gives us

V(z,y) =N "ta+aV1b
Counting for all the various cases, the eigenvalue equation is
(1.1)
N r—1

glx) =a"hg(x)+ Y AV em v g(y) 4 abN T lg(a) + ) by laN T et g (y)
y=z+1 y=1
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Bethe Ansatz. Assume that g(z) = z” for some z as of yet undetermined.
Then

N N b y—r—1
E CQbN+y—z—1ax—y—1)Zy :C2aN—22$+1) § ()
a
y=z+1 y=z+1
N—x
1— (b=
:C2aN72Z:v+1) ( a )
1 bz
a
C2aN72Zw+1) aajflewaQZN+1

a? — abz a—bz
Similarly,
2 1N—1_x r—1pN—x .2
z—1 Qby—z—l N—(y—z+1) )y _ c*ab z ) a b c°z
sum, Zc a == —
a? — abz a—bz

so adding these we get for the right hand side of (|1.1)):

aN-1py o CQ@;V_QZZ+1) B aw_le;wCQZ(ZN ) abN e CQ(IZbN_lbzw)
a? — abz a—bz a? — abz
N ab+ (c* — b?)z o a””_le_mc2z(ZN Sty a? —c* —abz I
a? — abz a—bz ba — b2z

we can eliminate the unwanted term (the coefficient of (2% — 1) by simply setting
2N = 1. Then

2 __ 12 2 _ o2
AoV <ab—|—(c b )z) Y (a c abz) r

a? — abz ba — b2z

All the eigenvalues corresponding to the roots of 2z = 1. We would need to do
some additional work in the general case.

1.3. Proposition. The preferred eigenvector of V' for n = 1 is the vector

g(z) =1for all x =1,..., N and have a corresponding preferred eigenvalues
b+ (c2 —b?) a?—c*—ab
A=V (2T 7)) o v (4 —€C — a0
“ ( a? — ab = ba — b?

2. Casen =2

Now, g(X) = g(z1,22) for 1 < x; < 22 < N and V(X,Y) = 0 unless either
Ty S Y1 S22 S Y2 O Y1 S 1 S Yo < 2.
The contribution for the first type is
a" " E(x1,y1) D(y1, w2) B (g, y)eN ¥

where
_Jevrl ifr <y
E(z,y) = { b/c ify==x

and

_Jeat vl ify<a
D(y,x)—{ a/c ify==x
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Now, consider the following case:

e x1 < yi: In this case we have one vertex of type (5) for z; and y; —21 — 1
vertices of type (4); for y; we could have a vertex of type (2) or (6). Then
E(xq,y1) = cbr— 171,

e = = y: In this case we have one vertex of type (1) so we have F(x1,y1) =
b/c.

e y; < xo: Here, if x1 = x5 we've already counted y;. If on the other hand if
21 < y1 then we add these contributions x; < y1: D(y1,21) = ca®2 vl

e y; = xo: In this case we have the partition z1 < y; = =2 < yo which
corresponds to a vertex of type (2). Then D(z,y) = a/c

e 15 < yo:Similar to the above, we have E(xa,y2) = cb¥2~ %271

e x9 = yo:Similar to previous two, E(xa,y2) = b/c.

Thus the eigenvalue equation is

Ag(z1,22) = Z Z B (21, 51) D(yr, m2) E(x, y2)ca™ "2 (1, 2)

1 <y1<x2 x2<Y2<N

+ Z Z b E(yr, 1) D(21, y2) E(y2, 22)cb™ "2 g(y1, y2)

1<y1<z1 21 <y2<w2

where the star indicates that we’re adding the condition that y; < ys.

2.1. Ansatz for the Eigenvector. We will assume g takes the form g(x1,x2) =
A1227' 252 A12 where Ajg is constant.

Use the ansatz, the first double sum becomes

Z Z Y E (21, 51) D(yr, m2) E(g, y2)ca™ V22 25

z1<y1<z2 22<Y2<N

= Z a® " E(zy,y1)D(y1, x2)czd? Z E(29,y2)a™ Y224

z1<y1<T2 z2<y2<N

The second summand here can be rewritten as follows:

b N
:7aN—a;22%cz + Z bez—wz—laN—yzzg2
C
ya2=x2+1

N ya—T2—1
b n_ o bza \*
:7aN xzz;z—l—caN To 1z§2+1 §
C

ya=z2+1

_ (@)N—“
= aN7I2Z§z + Cawazflz;"z"rl a ;
‘ 1-t=
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The first sum then is the sum of the y; = x; part, the y; = x, part and
standard part.

z2—1 hy\ Y1 o1l
awl—lbawg—wl—lcziltl + awl—lcbwz—wl—lz2rz+ Z ()
a
y1=z1+1
:a;cz—3c3
By Baxter, the result will eventually be
Arp{a™ (L1a™ ™ 27" 4+ Mib™2 ™" 212) x (Laa™ ~"2 252+ Pob™ ~722JV)

_aN—i-zl—zg—lbxg—rl (ZIZZ)IQ}

Where
b 2 _ b2,
Li=L(z) = %
b+c?— abz
M, = M(z) = %
P, = P(z) := an—inbzi

Similarly, the second sum is

‘Ap{(a™ Py 4 Mib™ 27) x (Laa®™ "t 25"+ Myb®2 1 252 )pN ~ 2
_a12—£1 bN+ac1—ac2 (Zl ZQ)rl }
Now, opening these sums we get three types of terms: wanted terms, unwanted
internal terms and unwanted boundary terms. We will deal with them in order.

e Wanted Terms The wanted terms are those proportional to g(z1,xs2) ie
the terms
A1p (aV Ly Ly + bN My M) 27 252
Assuming we can cancel out the remaining terms, these will give rise to
an eigenvector with eigenvalue
A= A(Zl,ZQ) = aNLlLQ + bNM1M2

where z; and 25 have yet to be determined.

e Unwanted Internal Terms These are terms that contain (z122)** or (27 22)*2
and include in particular (but not exclusively) those coming from the sub-

tracted terms above, ie
Ao (aNJr"“*"’”zb‘”?*wl(Mng - 1)(2122)””2)+A12 (a“*“bNJr"“*"”z (MLy — 1)(2122)””1)
Exercise. Show that M;Ls — 1 = —c?s12/[(a — bz1)(a — bzy)] where
S12 =1 —2A29 + 2129
a?+v* -2

A =
2ab
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e Unwanted Boundary Terms Let R;(z,z’) := Ljag”/’g”zf + Mjb””/’””zf/.
These terms are then
_Alzawle_szl(.’I;l,.'172)P2252

and
—A12Cm1 bN712R2 (xl, J,‘g)PQ

3. Elimination of Unwanted Terms

3.1. Elimination of Unwanted Internal Terms. We will try to eliminate
the internal terms of the form ) Agg)zﬂzgiﬂ We will first require that A defined
as above is independent of . Our second requirement will be that we can fins 2]
and 2} such that z129 = 2125 and A = A’.

By eliminating 2} we are left with a quadratic equation so the solution must
be either z; = 2} or z} = z3_;. Recall now the ansatz:

g(x1,m2) = A12274 257 + Ay 251 272
Then the unwanted terms will cancel if
(M1L2 — 1)A12 + (M2L1 — 1)A21 =0
But using the formula from the exercise this simplifies to
512412 + 521421 =0
but these are equations in A5 and As; in terms of z; and 29 so the solution is

Ajp s

Ag1 512

3.2. Elimination of Unwanted Boundary Terms. We can rewrite the
contribution from the boundary terms as

—a” bV { PRy (w1, 2) (28 A1z — A21) — PRy (w1, m2) (21 Aoy — A12) }

So these terms vanish if

z{v _ @ _ 521
Aoy 512
o An s
Aqo 521

Or, explicitly

1-— 2A2’1 + 2129
S 1-2A%n 422
zé\f _ 1—2Az9 + 2129
1-— 2A21 + 2129

Before moving on, its interesting to observe that if we multiply these two equa-
tions together we get (2122)N = 1 50 2122 = & is an N’th root of unity of 1. This
then implies that

g(w1 + 1,2 + 1) = z1229(w1, 22) = Kg(z1,72)

Now, by the PF x = 1 since otherwise the entries (?) could be all of RY. Thus
217292 = 1 and
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x x T xr
g(x1,m2) =A1227" 252 + Aoy 25" 212

Arz
=Ag (zflz§2 + 251 272
Ao

=Ao; (zf'“‘lz? + zglzf2>
Set z1 = exp(ik). Then
g(x1,22) = A2 exp(i K (N + 21 — x2)) + exp(—iK (z1 — z2))

= Aoy exp <M) 2 cos <K <1’1 — 29 + N))
2 2
N
X COS (K (a:l — X9 + 2))

Now, Aoy only depends on z; and z3 not on x7 or xo and so is constant and can
be dropped from the eigenvector. As 1 < x; < xo < N the quantity x1 — x5 + N/2
ranges over [—1 + N/2,1 — N/2] = [—r,r] where r = N/2 — 1. To make sure that
g(z1,z2) is real and positive it is sufficient to check that either k € [—m/2r, 7 /2r]
or k € iR* is purely imaginary.

Now,
N 1—2A21+1 1—A2,’1

T T AT :_1—Az1_1
But then 2V — Az} ™' = —1 + Az and so
2V 41

z{vfl + 21
LTS
T eiN-DK 1 eiK
cos((r + 1)K)

cos(rk)

A:

This implies two things:
(1) If A < 1 then the above equation has a unique real solution in [0, 7/2r]
and no purely imaginary solutions.
(2) If A > 1 then the above equation has no solutions in [0, 7/2r] and a single
purely imaginary solution.

This solution (which depends on A) is the PF solution.

4. Case: Generaln >3, < N

Let X = {;} be the vector of increasing points 0 < z; < ... < 2, < N and
let Y = {y1} be the vector 0 < y1 < ... <y, < N. Again, V(X,Y) = 0 unless X
and Y interlace, ie
or

The corresponding configurations are then given in Figure
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| ,
A R

Equation E Equation @

FiGURE 3. Diagrams of line configurations in the case of general n

And the eigenvector reads

Ag(X) = Z a"' " By D1gEyy Dag . .. Enpca™ "V g(Y)
X<y

+ > 0 D1 E1aDyyEas . Dy " g(Y)
Y<X

where the * indicates that y; = y;11 is not allowed and where D;; = D(y;,z;) and
Eij = E(xi,y;).

Now, the first sum gives
A1 n{a®* Ri(x1,22) ... Rp—1(Tn—1,Tn) X (LnaN_x"zﬁ" — PnbN_a”"z,JlV) — terms for y3 = ¥;11}
and the second sum gives
Ay o {(Pra™ + Myb®™ 2§ ) Ro(y, 22) . .. Rp(2p1,2,)bY %2 — terms for y; = yir1}

Each R is the sum of 2 terms, so the above are really 2"~ ! terms. Only one of these
terms is ”"wanted”:
A=a"Li...L,+bM,... M,

aside from the boundary terms, other terms contain at least one of the following
factors: (z;zj41)%+* (corresponding to y; = ;41 = Y;j4+1) or (zjzj4+1)%). This
leads to that following.

Bethe Ansatz.

g(x1, ..., xpn) = Z Aozizl) e zi?n)
g€Sy,

Now, the unwanted terms cancel if

So(po(i+1)Ac + So(i+1)0() AGj+1)e =0

The boundary terms contain one factor of P; for some value of j so by replacing
21...2p DY 22...2n,2)1 we can show that the boundary terms vanish if

—ZfVAQ...m +A1.,=0
and more generally that they vanish if
As(1)...0(n)
(4.3) 2N = T
O A2y amyo)

The above are sufficient to get an eigenvector. Now let consider the implications.

So()o(i+1)Ae T Se(j+1)0() AGj+1)e =0
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has the solution
Ay = (-1)7 H So(j)o (i)

1<j
so substituting into Eq. (4.3) we get

N et TT Sol0o)
2Ny = (—) ] 2ee
@ g So(1)a(0)
which give the Bethe Equations
"5
2= (=1 n—1 261
J ( ) e:HQ S1,¢
5. The Maximum Eigenvalue

Consider the "trivial” case A > 1. Then let A,, denote the maximum eigenvalue
of V on the subspace with quantum number n. It was proved that Ag > A; for
1 <i < n and that Ag > A,,. But this implies that

Amax =Ao= aN =+ bN

so f = min(ey, e2) and the most likely state of the system is one where all arrows
point up (n = 0) or down (n = N) and is unique.

6. Thermodynamic Limit: A <1

We will proceed as we did in the case n = 2. If z; = exp(ik;) then

Sej 11— A 4 pilK+KD)
sie 1— 2AeiKr 1 ei(K;+KD)

=: exp(—i0(K;, Ky))

Note that if z; # 0 then s, , ;¢ 7# 0 and so their sy ;/s;, € C*. Now, assuming
that z; lies on the unit circle (so K; are real) we have

i i(p+

61) e(-iblp.0) = am O
(1 —2Ae™ 4 e PHO))(1 — 2Ae™1 4 i (PHa))
(1 — 2A¢i 4 ¢i(P+0) (1 — 2Ae~14 + e—ilp+a))

2+ 2cos(p + q) — 4A(e + ™) + 4A2ei(P—9)
2 +4A2 4 e~iPta) — 2A (e~ + eiP) — 2A (e~ + €4)
24 2cos(p+ q) — 2A(e? + e7) + 4A2e' P~
24+ 4A2 + 2cos(p + q) — 4A cos(p) — 4A cos(q)

Note, it’s clear that this last sum is symmetric under the change p < ¢ so x; and
sp,; are indeed on the unit circle.

z

Now, consider Z where |z| = |w|. Then

0 _atib_

z
w ww ww
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where p =1 and 6 = tan~!b/a. Now, we will need the following relations:
P 4 71 — o3 (P—a) (e%(p+q) + e—%(p+q))
= 2¢3(P~9) cos (;(p + q))
and
Al P—0) _ (e“’ + e—iq) -9 (Aei(p—q) _ e300 ¢og (p + q))
2

Now, it’s clear that the denominator of the last line of Eq. (6.1]) is actually the
norm squared of a diagonal fraction of modulus 1 (since it is symmetric in p and
q). The numerator is

2+ 2cos(p+ q) — 2A(e” + e7') + 4A%! P79
=2(1 + cos(p + q) — 4Ae2 79 cos (p—;— q) + 2A2¢4P=9)

After further simplification we find that this is

— 90,9

A sin 2=¢
@<p,q>:2tan1{ T2 }
CO

ptq P—q
s b5 A cos 5

where

7. Summery

Give that ©(p,p) =0,

exp(iNK;) = (-1)"" [] expli®(K;, Ky)]

£=1,6#5
n
= (=1)" ' [ expliO (K, Ky)]
=1
Taking log of both sides we get
(7.1) NK; =2rI; - Y _O(K;, Ky)
=1

for some I; € Z if n is odd and I; € Z + % if n is even. What do we want to take
for our I;:

K should be distinct but packed as closely as possible.
Since K; ~ 0 and O(p, ¢) = 0 for p,q ~ 0 we should have K; ~ I,2r/N;
e To have K; distinct and as dense as possible we must make sure that

Ij+1 — Ij =1.
e Symmetry about 0. Ie, I; + I,_j41 = 0, or equivalently that I; = —"T_l.
Then

n+1
2

Ij=j-
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Now, Yang and Yang showed that there exists a unique real solution of
with I; given by the above conditions. Then in the Thermodynamic Limit these
stay solutions of as N — oo and 4 fixed since & is the probability of a given
arrow to be an up arrow in the conﬁguratlon. Thus n — oo and Ky,..., K, (or
rather 0K + ...+ 0K,,) tends to a distribution on R.

Define a function

o(K)dEK — # of zero’s between K and K + dK

Then

1 n
NK; =2 (j— ”;r ) — Y O(K;, Ky)

Taking n, N — oo we have

29 i Ke) /Gkk k')dk’

=1
= —>/ K"dK'

since there are j(—1) K,’s less than K.
So in the limit we get

K
EKZQ’JT/ p(K)dK’—w—/@(K,K')p(K')dK/
n — 00
which implies that
N 00
— =2mp(K) — K,K')p(K")dK'
~ = omp(K) — [ SEK KNp(K')d

so in the end we get an integral equation
N
2np(K) = — + /81®(K, K')p(K")dK'
n

This can be solved by Fourier Integrals.
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