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Section 2

a. State-of-the-art and objectives

Introduction

K-theory and TMF': The Atiyah Singer index theorem is a celebrated result treatipts
the number of solutions of certain differential equatiotts.authors got the Abel prize
“for their discovery...] bringing together topology, geometry and analysis, anil tu-
standing role in building new bridges between mathematidslaeoretical physics”. The
mathematical theory callel -theory is at the base of this result:

- Singer inde %

Algebraic Aty Sorem Analysis
~—| K-theory |—— .

topology on manifolds

A recent theory strongly related ta-theory is that of topological modular forms
(TMF). The latter is a notoriously difficult subject. The existerof TMF was an-
nounced in the nineties, but its construction was so irtgitaat the foundational papers
[HMi], [HMa] never got finished. For a long time, the only aledile references were
the background papers [La], [Wi], [Se2], [LRS]. Nevertteethe results of Hopkins,
Mahowald, and Miller attracted a lot of attention, and masioanding results were an-
nounced [AHS], [Ho], [Be]. Lurie’s novel approach t6MF [Lul] also allowed for
remarkable applications [BeL].

We expectT’MF to have an impact comparable to that/oftheory and of the index
theorem, but now in the context of loop spaces. Witten's adgrmomputations [Wi] and
the occurrence of modular forms in string theory form strewiglence to that effect:

heuristics from
string theory

Algebraic Analysis on
topology loop spaces

In short, TMF should establish a strong link between algebraic topologlyamalysis on
loop spaces, with same impact as the index theorem.

Overall aim: Unlike K-theory, the current definitions dfMF are of algebraic nature
[HMI], [Lul]. Many tried to find a geometric model of that thgoBDR], [HK], [ST1].
But even though progress has been made, none of the atterqgsompletely success-
ful. Our ultimate goal is to provide such a model:

Main goal: Find the first geometric definition GtM F
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An attempt towards that goal (probably due to Graeme Segaljdiwbe to definel’'MF
to be theDiff (S')-equivariantk -theory of the loop space:

TMF*(M) := K51y (LM).

Unfortunately, that particular variant éf-theory remains ill-defined.

Our main innovation in order to achieve the above mentiomed ig to use conformal
nets. Initially developed in order to describe quantum fiéleory in four dimensions,
conformal nets turned up most useful in the context of twoetisional conformal field
theory. In the same way as Clifford algebras are used for idgfi -theory, we expect
conformal nets to yield a description GiM/F. More specifically, the:-th power of the
free fermion conformal net should correspond tosth Clifford algebraCliff (n). The
structure in which conformal nets organize, a 3-categgpyears to be quite remarkable
by itself. Therefore, we also plan to study conformal netdlieir own sake.

Key objectives:

¢ Finish the description of the tricategory of conformal rigtq.

e Investigate our new notion of equivalence between confores [4].

e Prove our conjecture about the equivalencé@f(n) and Fer(n + 576) [§5].
e Compute the action of € m5tP¢(.S%) on the invertible nefer(1) [§7].

Our most ambitious goal is to find’BM F-analog of the Atiyah Singer index theorem. In
other words:

e Develop a theory of analytic pushforward T/F cohomology §12].

To limit the risks associated with this ambitious projecg ave added some side-goals,
whose accomplishment are not dependent on the successfipleton of other tasks.
Each one of them is suitable for a PhD project:

e Study string connections, and develop Chern-Weil theargtiong bundles{9],
¢ Define and study conformal blocks for conformal n€ts]],
e Extend Chern-Simons theory down to poirf$1].

§1. A 3-category of conformal nets

In [BDH1,2], we plan to show that conformal nets form a 3-gaty. The existence of
such a 3-category had been conjectured by Stolz and Teichner

Conjecture. (S. Stolz, P. Teichner)here exists an interesting 3-categofysuch that
Home(1¢, 1c) is equivalent to the 2-category of von Neumann algebras amadules.
Here,C is assumed to be symmetric monoidal, with unit object

Their hope was that a good answer to that question would tnelm tcomplete their
project, and provide a field theoretical definition®#/F [ST1]. The 3-categorical nature
of conformal nets (and thus of conformal field theories) igxinemely interesting feature
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and its applications will certainly reach beyofid/F'. So far, it appears to have escaped
the attention of physicists. We borrow terminology from fmymal field theory to name
the objects, arrows, 2-morphisms and 3-morphisms of owt8gory:

The 3-categoryC'N3

Objects Conformal nets

Arrows A — B Defects between the netsandB

Arrows from A to the unit object 1 || Boundary conditions for the net

2-morphisms between arrows¥; B Sectors betweend-5-defects
2-morphisms from 4: A — A to itself Sectors of the netl
3-morphisms between 2-morphisms Homomorphisms of sectors

There are many formalisms for doing conformal field theoigde$rom conformal nets:
vertex algebras [FBZ], chiral algebras [BD], algebras dpartial) operads [Sel], [Hu],
etc.

Some authors have already considered 2-categories as espapfe framework for
studying conformal field theories [FRS]. But we would likeeimphasize that replacing
2-categories by 3-categories is much more than a changenoint@ogy. To our knowl-
edge, the only formalism that exhibits this 3-categoriclne is that of conformal nets.
Exporting our ideas to other areas of conformal field theanyld be very exciting and
will be the subject of future research projects.

The definition. For people who haven’t heard of conformal nets, we includefaniion.
We refer the reader to [Ka] for a short survey article, and.tan] for a more extensive
treatment. Here[d denotes a Hilbert space, ad H) its algebra of bounded operators.

Definition. A conformal net4 consists of a Hilbert spacé/, a projective
representation; of Diff (S') on H, a vector2 € H, and an assignment

A : {subintervals o5’} — {subalgebras oB(H)}.

These are subject to the following axioms:

- The A(I) are von Neumann algebras, i.e. closed in the weak topology.
-1f I C J, thenA(I) C A(J).

- If I'is the complement of, then.A([) is the commutant ofi(.J).

- The algebrasA4(/) generateB(H).

- The representation adbiff (S*) on H is of positive energy.

- Q is invariant under the action ofZ,(R) C Diff (S1).

- Givenyp € Diff(S'), then one has (o) A()u(p)~t = A(p(I)).

- If ¢ fixesI pointwise, them\d(u(y)) fixes.A(I) pointwise.
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§2. A “coordinate free” approach to conformal nets

In its usual definitions [GF], [Ka], [Lon], a conformal netgsven by a Hilbert space H,
and an assignment

A : {subintervals o5’} — {subalgebras oB(H)}.

But in order to define the tricategoyN5 of conformal nets, we find it is useful to take
a more coordinate free point of view. Such an approach waadyr suggested in the
context of quantum field theory on curved 4-dimensional spige [BFV].

Here, by ‘coordinate free’, we mean that instead of conediniy on subintervals of
S1, one should takel to be a functor defined on the following larger category:

Alternative definition (Sketch)A conformal net is a functor
A : {1-manifold§ — {von Neumann algebras

from the category of all compact one dimensional manifghds$ibly with boundary) and
embeddings to the category of all von Neumann algebrasestutyg certain axioms.

Note that the Hilbert spac# and the chosen vectét have now disappeared from the
definition. We know that a conformal net (as defined§h]] induces a coordinate free
conformal net (as defined above). However, we still wondeleunvhich circumstances
the converse can be made to hold.

§3. A close analogy betweerk -theory and TMF

Both in the homotopy theoretical approach [HMi] and in thddfitheoretic approach
[ST1], there is a strong parallel between r&atheory (KO) and of TMF'. Therefore, we
also expect such an analogy in our analytic context.

One of the most important ingredient in the definition of gtial X O-theory is pro-
vided by the Clifford algebra&'iff (n). Finding the analogs of Clifford algebras féi/F
was a long outstanding question to which we claim to have awan the free fermion
conformal netFer(n). Physically, the free fermion describesmassless particles with
no interaction. The associated chiral conformal field tiigsrundoubtedly among the
simplest ones, and the same holds for the correspondingroal net. Nevertheless,
the free fermion has a lot of very interesting mathematicapprties, almost identical to
those of Clifford algebras:

Clifford algebraCliff (n) The free fermionFer(n)
Cliff (n) has an action of)(n) Fer(n) has an action o (n)
CUliff is a multiplicative functor: Fer is a multiplicative functor:

Cliff Ve W)= Clff(V)® Cliff( W) | Fer(Va& W)= Fer(V)® Fer(W)
Cliff (n) can be used to defingpin(n) | Fer(n) can be used to defingring(n)
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The use of Clifford algebras in the definition of rdaltheory goes as follows:

Roughly speaking, a class kO™ (X) is represented by a bundle 6fiff (n)-modules
over X. Those modules can be viewed as the element8wf ( Cliff (n), 1) in an ap-
propriate 2-category. It is therefore natural to try to asgl them with elements of
Hom(Fer(n), 1) in the tricategoryCN3 of conformal nets. These are the boundary con-
ditions for Fer(n). So we can now present our first tentative definitiorf 01 F:

Cohomology theory KO* TMEF*
The cohomological The Clifford algebras The Free Fermion
degree is controlled by Cliff (n) conformal netsFer(n)
Cohomology classes Bundles of Bundles of
of degreen are represented by Cliff (n)-modules | Fer(n)-boundary conditions

Of course, saying thak’ O*(X) is given by bundles ot’liff (n)-modules is only a cari-
cature. The actual definition involves actions@iff (n) on bundles of Hilbert spaces,
and fiberwise Fredholm operators. On th&/F' side of the story, we expect that similar
modifications will be needed. What these modifiations shbelds still something that
needs to be determined. But the work of Stolz and Teichne2]8dntains rather clear
indications (having to do with moduli of supersurfaces)wttibe direction one should be
looking in.

Defects and boundary conditions are well established in(h&’ literature. They
have been studied in many contexts (e.g. [FRS]) and, amdreyytin the context of
conformal nets in 1+1 dimensions [LR]. We would like to emgiaa that, so far, they have
never been considered fohiral conformal field theories (our free fermiodsr(n) are
chiral). We have thus introduced a novel, mathematicakgise, definition of boundary
condition, whose properties we are currently working on.

§4. A new notion of equivalence for conformal field theories

Given two ringsA and B, there exist two distinct notions of equivalence: ring isopm
phism and Morita equivalence. This comes from the fact thexiet are two different ways
of making rings into a category. If we viewandB as objects of the category of rings and
ring homomorphisms, we get the notion of ring isomorphism ik other hand, viewing
A andB as objects of the 2-category of rings, bimodules, and bireddomomorphisms,
we get the notion of Morita equivalence.

Similarly, the fact that conformal nets form the objects (-aategory yields a new
notion of equivalence. We call ©'N3-equivalence. We present some evidence that this
notion is worth wile studying. First of all, we know that if banets.A and B have dif-
ferent representation categories, then they cannate-equivalent: this shows that the
notion of CN3-equivalence is at least non-trivial. On the other handnibteon of CN3-
equivalence is strictly weaker that the notion of isomasphiHere is a concrete example
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of something that we plan to prove:

Claim. If a conformal netd has a trivial representation category, then there exists an
other conformal neB such that their tensor product ® B is CN3-equivalent to the unit
object of CNS5.

The above claim can be reformulated by saying that the cordbnet A is invertible,
with inverseB. In the celebrated paper [KLM], it was shown that a confornetlA has
trivial representation category if and only if a certain rerioal invariant.(.A) is equal to
one — the so called-index of A. Thus, we could rephrase the above claim by saying that
a conformal net4 is invertible if and only if itsu-index is equal to one. We also believe
that the following is true:

Claim. If two conformal netsA and B are CN3-equivalent, them(.A) = u(B).

Finding other invariants that can distinguish n6i%3-equivalent conformal nets with
same representation category and sanmgdex is a central problem on which we hope to
concentrate our efforts.

At this moment, it is still difficult for us to establish thatd conformal nets aré’N3-
equivalent. Here are some open questions:

Conjecture. Let L, L, be even unimodular lattices of same rank, and4et, A;,
be the corresponding conformal nets [Stas]. Then and. A, are CN3-equivalent.

We would also like to know if the moonshine net (on which thenster group acts [KL])
is CN3-equivalent to the one associated to a unimodular latticardt 24.

§5. Periodicity of the free fermions

Clifford algebras over the reals exhibit an 8-fold periai¢hat is intimately related to
the Bott periodicity ofK O-theory. Namely, there exist Morita equivalences

Cliff (n) =~ ClLiff (n + 8)

for every natural numben. We expect the relationship between the free fermion net
Fer(n) andT' M F to be analogous to the relationship betwegiff (n) and KO. Since

the cohomology theory’MF is 576-periodic [HMa], [Ba], it is natural for us to make the
following conjecture:

Conjecture. For everyn, there exists aC’N3-equivalence between the conformal nets
Fer(n) and Fer(n + 576).

This conjecture is quite mysterious, even from the point iefwof physics. The
theoretical physicists to which we showed the conjectucerwidea of where the num-
ber576 should come from. If true, this conjecture would be a raréainse of a situation
where mathematicians tell theoretical physicists sometthat they didn’t already know.
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§6. Symmetric monoidal 3-categories

One major difficulty in answering Stolz and Teichner’s quasis that the very notion
of symmetric monoidal 3-category has never been describéd entirety. The existing
definition of 3-category [GPS] is already quite bulky, andliad the words ‘symmetric
monoidal’ only makes things worse. Very probably, the gitrais about to change with
the groundbreaking work of Jacob Lurie [Lu2]. But even likest checking thatU N3
satisfies all the axioms appears to be very difficult.

So instead of working with fully weak symmetric monoidal &egories, we have
decided to describe the structur@/s best fits in. It is a notion of symmetric monoidal 3-
category in which some of the coherences are made stridcggmas to Shulman’s framed
bicategories [Shu]. That notion will be the main subject of paper [BDH1].

One further goal, which could be a collaboration with P. hiaier’'s team in Bonn, is to
finish the project started in [ST1], and u§&/3 to constructl’MF'. But for that purpose,
we would also need to understand fully weak symmetric mad@efunctors, a notion
that we have not developed yet. Our current plan is to estalalicomparison theorem
that would connect our notion to the one sketched in [Lu2].

§7. The free fermion and the 3° stable homotopy group of the sphere

Given a symmetric monoidal 3-categary an objectA is called invertible if there exists
another object3, such thatd ® B is equivalent to the unit objedt € C. Let us denote
by C'* the groupoid of invertible objects, invertible arrows, entible 2-morphisms, and
invertible 3-morphisms of’. That groupoid being equipped with a symmetric monoidal
tensor product, we expect its geometric realization| to have the structure of a spec-
trum (in the sense of stable homotopy theory). The homotepyms of that spectrum
should then be given by:

m(|C*|) = equivalence classes of invertible objectsof

7 (|C*|) = equivalence classes of invertible arrows from 1 to itself,

™ (|C*]) = equiv. classes of invertible 2-morphisms from the triviabav to itself,
73 (|C*|) = invertible 3-morphisms from the trivial 2-morphism to iffse
m.(|C*]) =0 for n>4.

Let S be the sphere spectrum, and recall that any spectrum $smaodule. The homo-
topy groups of C'*| are thus a module ovet,(S), the ring of stable homotopy groups of
spheres. The most interesting structure that this actionighes is a map

v 7T0(|CX|) — 7T3(|CX|),

given by the action of the generatoof 75(S) = Z/24.
Let us now specialize to the caée= CN3. By chance, it turns out that the third
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homotopy group of CN3*| is easy to describe, nameky (|CN3*|) = S*. So we get a
map
v : {Invertible conformal nets — S*.

Moreover, since the classhas order 24 in the abelian group(S) = Z/24, the above
map necessarily lands in the setdf roots of unity.

One test of whethef'N3 is a good answer to Stolz and Teichner’s question is whether
it contains enough interesting invertible objects. Moregmsely, whether there exists an
invertible netA such that/(A) is a primitive24™ roots of unity. We believe that the free
fermion netFer(1) satisfies that condition.

Claim. The image ofier(1) under the map is a primitive24™ root of unity.

At this moment, we certainly don’t know which primitive roof unity u(Fer(l)) is.
To answer that question, one would need to better undersiengeometry of the free
fermions, and how they behave in bundles.

§8. Geometric string structures

As our first concrete application of the free fermions, wengia construct an explicit,
geometric model of the String group [DH].

Recall that the String grouftring(n) is the 3-connected cover 6i(n). More gen-
erally, starting from the orthogonal grodpn), one encounters the following groups by
inductively killing their lowest homotopy group:

O(n) «— SO(n) . Spin(n) - String(n).

kill 7o kill 7rq kill 73

The first three are Lie groups while the last one is a topobdgicoup, well defined up
to homotopy. The String group can been realized in many réiffeways, and various
models have already appeared in the literature [ST1], [BCB& rather than studying
the topological groups, it is better to focus on the corresiing structures on manifolds:
orientability, spin structures, and string structures.

These structures on manifolds play important roles for tradiogy theories? (-, R),
KO, and TMF respectively. Namely, whereas all manifolds have a funaaatelass in
mod-two homology, only those which are oriented have a forefdal class in{ (-, R).
Similarly, only the manifolds that are spin have fundamkalasses inK' O, and only
the manifolds that are string have fundamental classéd\iit’ [AHR]. Thus, given the
intimate connection between string structures dmdF, it is important to have a good
geometric understanding of the former.

As mentioned above, the grodfiring(n) has already been constructed in many dif-
ferent ways. But finding a notion of string structure thatugable for doing analysis
remains a non-trivial task. Before explaining our proposesiwer, we recall some back-
ground on spin structures.

If V' is ann dimensional vector space equipped with an inner produet) tme can
consider its Clifford algebr&’liff (V). A good geometric model for a spin structureion
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is then provided by the choice of an invertill&iff (V')- Cliff (n) bimodule i.e., a Morita
equivalence between those algebras. Similarly, we expstiray structure or// to be
encoded by an invertiblé&er(V')-Fer(n) defect, namely, a®N3-equivalence between
Fer(V)) and Fer(n). Showing that this is indeed the case is the goal of our pdpsf.[

§9. Connections on string bundles

The analytic construction of pushforwards 0O-theory makes crucial use of connec-
tions on spin bundles. To construct an analytic pushforwar@)/ F'-theory, one there-
fore expects connections on string bundles to be necessary.

One of the existing models of the string group is a Lie 2-grfBSS]. This is a
2-categorical analog of a Lie group. Vector bundles witingtstructures therefore also
inherit this 2-categorical feature. For example, one catulee a string bundle as a pair
(P, G) whereP is aSpin(n) principal bundle, and is a gerbe orP. Using the above for-
malism, Waldorf introduced a satisfactory notion of cortiweton string bundles [Wal].
However, Waldorf’s notion is specific to the 2-group modetlo# string group. Adapt-
ing his ideas to the notion of string structure defined in [B#Hpuld be an interesting
and non-trivial task. This would require combining the thyeof von Neumann algebras
(which are the building blocks of conformal nets) with diffatial geometry, two subjects
that don’t look very compatible, at least at first glance.

As a further step, we could hope to develop Chern-Weil thémrgtring bundles, and
connect it to the 2-Lie algebra [BC] [He] associated to tmmgtgroup.

§10. Conformal blocks for conformal nets

Quoting [KL], there are “two mathematically rigorous apacbes to study chiral confor-
mal field theory using infinite dimensional algebraic systef@ne is algebraic quantum
field theory where we studiconformal nets and the other is theory of vertex operator
algebras”. Given a vertex algebra, one gets bundles of cmafidolocks over the moduli
spaces of Riemann surfaces [FBZ]. But a similar constrado conformal nets is miss-
ing at the moment. As an application of our coordinate frggr@gch to conformal nets,
we present a sketch of definition for the conformal blocks.

Given a Riemann surface, one first picks a cellular decomipasiThe edges being
1-manifolds, one can apply the functdrto them. So to each edgeone can associate a
von Neumann algebrd(e). To every faceF' one then associates a Hilbert spdce. If
e is an edge betweeR andF”, there are left and right actions of the algebtg) on Hr
andH . It therefore makes sense to take the Connes fusidhzdK 4., Hr . The space
of conformal blocks should then be the “total fusion” of &létHilbert spaceél - over all
the algebrasi(e).

Unfortunately, the definition of Connes fusion is technieaid it is not obvious how
to define the total Connes fusion. We are confident that thiscaeh can be made to
work.



A. HenriquesCN&TMF, Part B2. ERC Starting Grant

§11. Extending Chern-Simons down to points

Let G be a compact Lie group. In its current formulation [Tu], gwsn Chern-Simons
theory forGG is a 1+1+1 dimensional topological field theory. In other et assigns al-
gebraic objects to closed one-dimensional manifolds, tedwnensional manifolds with
boundary, and to three-manifolds with corners of codimamsivo. Refining the defini-
tion to a 0+1+1+1 dimensional theory is an interesting arificdit problem. Roughly
speaking, it would require having algebraic objects asdedito points, intervals, sur-
faces with corners, and to 3-manifolds with codimension Bers. Until recently [Fr],
the guess was that the 0+1+1+1 dimensional version of C&enons theory would look
roughly as follows:

0-manifolds — C-linear 2-categories
1-manifolds — C-linear categories
2-manifolds — vector spaces
3-manifolds — numbers

In other words, it should be a functdtord; — 2Catc, from the 3-categoryBords of
zero-, one-, two-, and three-dimensional manifolds (wgthrapriate extra structure) into
the 3-categoryCatc of C-linear 2-categories.

In their recent preprint [FHLT], Freed, Hopkins, Lurie, &lan have made signifi-
cant progress. They replaced'atc with another 3-category, whose objects are tensor
categories equipped with extra structure (a central aci@rbraided category). By using
the main result of [Lu2], they could then extend Chern Simivesry down to points in
the special case whehris a torus.

But if G is non-abelian, the 3-category used in [FHLT] doesn’t seerhe power-
ful enough. CN3 however, seems perfectly suited for the problem. Namelg|yapy
the result of [Lu2] to the loop group conformal nets of [WastidGF] gives us for free
a 0+1+1+1 dimensional topological field theory. In other d&rit provides a functor
Bords — CN3, from the 3-categonBords of framed 0-, 1-, 2-, and 3-manifolds into the
3-categoryC'N3 of conformal nets:

0-manifolds > conformal nets
closed 1-manifolds — von Neumann algebras
1-manifolds witho,,, andd,,,; — defects between conformal nets
closed 2-manifolds — Hilbert spaces
2-manifolds witho,,, ando,,,; — bimodules over vN algebras
2-manifolds with corners — 2-morphisms in the tricategoy N3
closed 3-manifolds — complex numbers
3-manifolds witho,,, ando,,,; — maps between Hilbert spaces
3-manifolds with codim 2 corners — maps between bimodules

3-manifolds with codim 3 corners — 3-morphisms in the tricategoy/N 3
The remaining non-trivial question is to identify the abevith Chern-Simons theory.
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§12. Pushforward along fibrations in 7'M F cohomology

This subject is by far the most ambitious of all our goals.

We use the analogy with’ O-theory do describe the situation that we expect to find.
Given a mapf : N — M between spin manifolds, there are two cases in which one can
define a pushforward i O-theory:a) If fis an immersion, and) if f is a submersion.

In the first case, the construction is geometric and doesqliire to leave the realm of fi-
nite dimensional vector bundles. On the other hand, thetagrt®n of pushforwards for
submersions uses fiberwise Dirac operators, and is thusapftannature. The compati-
bility between those two pushforwards is then given by tmilfaversion of the Atiyah
Singer index theorem.

Similarly to the case of{ O, we expectl'MF-pushforwards along immersions to be
much simpler than pushforwards along fibrations. The |ateuld be somehow related
to taking theDiff (S*)-equivariant Dirac operator of the fiberwise free loop sf&tac].
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b. Methodology

In the very beginning of the project, | will continue my proje with C. Douglas and A.

Bartels, and finish [BDH1,2] and [DH]. These will form the men which other people

will do their work. | then plan to hire three students and oonstdoc, as shown on the
following timetable:

Finish and publish
[DH] & [BDH1,2]

}
—Year &

Year 2—— Year3—— Year4—— Year5

Ph.D. student
Ph.D. student
Ph.D. student

Postdoc

The big diagram below displays our various intermediatelggaad their interdepen-
dences. The boxed items represent our various objectigtsd Ihierarchically, while
an arrow indicates the logical dependence of one projechothar one. The central box
states our main objective: to develop a geometric defintifoA/F using our notion of
defect between conformal net3]:

Define an analytic pushforwand Do Chern-Weil theon
/ In TMF-cohorTnoIogy for string bundles
. Formulate a geometric\ T

Geometric notion of
string structures
via conformal nets l T

definition of TMF Connections
on string bundles

Determine the periodicity
of the free fermions Extend Chern-Simons

/ \ theory down to points

Compute the actlo Investigate the notior
of 5(S) on Fer(1 of CN3-equivalence

\/

Finish the proof

Define conformal blocks

\"2

Notion of defect — |that CN3 is a 3-category for conformal nets
between conformal nets / \ /
Notion of symmetric “Coordinate free”
monoidal 3-category approach to conformal nets
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Let us emphasize that, even though they are not publishethgehotions of symmetric
monoidal 3-categoryp], of defect between conformal netd], and the coordinate free
approach to conformal net$d] have been established by us, and constitute a solid ground
for further investigations. The first two are posted on my page [DH], while the third
should appear very soon in [BDH1].

c. Resources

In total, | would like to hire one postdoc and three PhD stuslelhe postdoc should be
well acquainted with conformal nets, and, for example, ddndlp investigate the notion
of CN3-equivalenced4].

For the three PhD students, | have defined some side-goalsanduezomplishment
is not dependent on the completion of other intermediatgept& Chern-Weil theory
for connections on string bundle§9], higher genus conformal blocks for conformal
net [§10], and extendend Chern-Simons thedj¥1]]. These should be suitable as PhD
projects: they are not too difficult, but will neverthelesmstitute very nice results on
their own.

Here is an estimation of the overall costs of this proposal:

| COST CATEGORY | Year 1] Year 2| Year 3| Year4| Year5| Total |
PERSONNEL
Pl: A. Henriqueg1,0 fte) | 67373 70690 74103 77612 81087|| 370866
Post doc 27797 57770, 60956, 31558 178080
(: PhD student 34034 40448 43195 46147 163824
o | PhD student 17017 37241 41821 44671 23509| 164259
O | PhD student 36241 43050 45962 49085|| 174339
© [Total Personnel 146221 242390 263126 245950 153681/ 1051368
5 OTHER DIRECT COSTS
w | Comput., software, books 5000/ 2500 1500 1500, 1500 12000
X Travel (2500 pp per year) 7500 15000; 15000; 13750 6250 57500
O | International guests 5000 5000{ 5000 5000, 5000 25000
Costs of audit certificate 2500 2500 5000
Total Other Direct Cost§ 17500 22500 24000 20250, 15250 99500
Total Direct Costs 163721 264890 287126 266200 168931/ 1150868
Indirect Costgoverheads) 32744 52978 57425 53240 33786/ 230174
Total costs of project 196465/ 317868 344552 319440 202717 1381042
Requested grant: 196465 317868 344552 319440 202717 1381042

d. Ethical issues

None. (ethical issues table on p. 13)
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Section 3

Pl's Host institution.

The research described in this proposal will be carried bilteaUniversity of Utrecht. It
is the leading university of the Netherlands, and its maffadienent comprises more than
80 staff members (professors, post docs, and PhD studaats}s all areas of mathemat-
ics.

It should provide fertile ground for this project and we haeedoubt about its ability
to attract bright PhD students and highly qualified post dddsreover, the topic of this
proposal overlaps with the interests of many Utrecht psifes

e The subject ofi-theory (3] is well represented in Utrecht. W. van der Kallen, J.
Stienstra, and J. Strooker have written many articles osthgect ([KS], [KMS], [Str],
[SV] to cite just a few).

e Categorical structures is among the specialties of I. Migejf8iM] and he has shown
much interest for our notion of symmetric monoidal tricatsg[56].

e The string group{8] was the main motivation for my paper én -algebras, which
was a direct continuation of M. Crainic’s work on Lie algeioi[CF].

e E. Looijenga has spent time investigating the propertieaformal blocks [Loo].
A definition of conformal blocks via conformal net$l0] would nicely complement the
work of his Ph.D. student [BoL].

e G. Cornelissen is a number theorist who is well acquainted miodular forms and
related mathematical objects [CL], [C].

e U. Schreiber is a recently hired post doc who did extensivkwa the applications
of higher categorical structures in theoretical physi&S\V], [Sch], [BCSS], [BS].

¢ Finally, the UU also has a strong physics department, withenous mathematical
physicists. This could be crucial for the good developmédrduw project given its in-
terdisciplinary nature. One physicist who | might expectjéb involved is S. Vandoren,
whose research is on superstring theory, supergravity @mersymmetric field theory.
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